Viruses exploit different strategies to escape immune surveillance, including the introduction of mutations in cytotoxic T-lymphocyte (CTL) epitopes. The sequence of these epitopes is critical for their binding to major histocompatibility complex (MHC) class I molecules and recognition by specific CTLs, both of which interactions may be lost by mutation. Sequence analysis of the nucleoprotein gene of influenza A viruses (H3N2) isolated in The Netherlands from 1989 to 1999 revealed two independent amino acid mutations at the anchor residue of the HLA-B27-specific CTL epitope SRYWAIRTR (383 to 391). A R384K mutation was found in influenza A viruses isolated during the influenza season 1989–1990 but not in subsequent seasons. In the influenza season 1993–1994, a novel mutation in the same CTL epitope at the same position was introduced. This R384G mutation proved to be conserved in all influenza A viruses isolated from 1993 onwards. Both mutations R384K and R384G abrogated MHC class I presentation and allowed escape from recognition by specific CTLs.
Trivalent live attenuated influenza vaccines whose type A components are based on cold-adapted A/Leningrad/134/17/57 (H2N2) (caLen17) master donor virus (MDV) have been successfully used in Russia for decades to control influenza. The vaccine virus comprises hemagglutinin and neuraminidase genes from the circulating viruses and the remaining six genes from the MDV. The latter confer temperature-sensitive (ts) and attenuated (att) phenotypes. The ts phenotype of the vaccine virus is a critical biological determinant of attenuation of virulence. We developed a plasmid-based reverse genetics system for MDV caLen17 to study the genetic basis of its ts phenotype. Mutations in the polymerase proteins PB1 and PB2 played a crucial role in the ts phenotype of MDV caLen17. In addition, we show that caLen17-specific ts mutations could impart the ts phenotype to the divergent PR8 virus, suggesting the feasibility of transferring the ts phenotype to new viruses of interest for vaccine development.
Seven putative origins of DNA replication (or/s) were identified and located on the genome of Autographa ealifornica multiple nucleocapsid nuclear polyhedrosis virus (AcMNPV), when an improved infection-dependent replication assay was used. A threefold higher yield of amplified plasmid was achieved when an m.o.i, of 1 was used (instead of 25), and another twofold increase was obtained when the interval between transfection and infection was extended from 5 to 24 h. Six of the putative or/s were located in hr regions with homologous sequences. This suggests that all hrs in AcMNPV are bifunctional, i.e. have both or/and enhancer activity for transcription. In addition to the six hrs, the HindlII-K fragment of AcMNPV was also identified to carry a putative or~, although this fragment does not contain an hr region. However, the individual role of these seven or/s during viral DNA replication, and whether they are all active simultaneously in vivo, is still unclear. The replication of an or/-containing plasmid starts at the same time (6 h post-infection) and proceeds at the same rate as viral DNA replication. A circular topology of oricontaining plasmids was a prerequisite for replication. Linear DNA, with an or/, did not replicate. Therefore, we suggest a theta structure or a rolling-circle as a model for baculovirus DNA replication.
Continued H5N1 virus infection in humans highlights the need for vaccine strategies that provide cross-clade protection against this rapidly evolving virus. We report a comparative evaluation in ferrets of the immunogenicity and cross-protective efficacy of isogenic mammalian cell-grown, live attenuated influenza vaccine (LAIV) and adjuvanted, whole-virus, inactivated influenza vaccine (IIV), produced from a clade 1 H5N1 6:2 reassortant vaccine candidate (caVN1203-Len17rg) based on the cold-adapted A/Leningrad/134/17/57 (H2N2) master donor virus. Two doses of LAIV or IIV provided complete protection against lethal homologous H5N1 virus challenge and a reduction in virus shedding and disease severity after heterologous clade 2.2.1 H5N1 virus challenge and increased virus-specific serum and nasal wash antibody levels. Although both vaccines demonstrated cross-protective efficacy, LAIV induced higher levels of nasal wash IgA and reduction of heterologous virus shedding, compared with IIV. Thus, enhanced respiratory tract antibody responses elicited by LAIV were associated with improved cross-clade protection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.