A radioaerosol scanning technique measuring regional clearance of sodium pertechnetate (99mTcO-4) and 99mTc-labeled diethylenetriaminepentaacetate (99mTc-DTPA) was used to assess changes in canine pulmonary epithelial permeability following lung irradiation. Doses of 2,000 cGy (11 dogs), 1,000 cGy (2 dogs), and 500 cGy (2 dogs) were given in one fraction to either the entire right hemithorax (500 cGy) or the right lower lung (1,000 and 2,000 cGy). Radioaerosol scans, chest roentgenograms, and computerized tomograms (CT) were obtained before and serially after irradiation. A dose of 2,000 cGy resulted in a decrease in regional pulmonary epithelial permeability to both 99mTcO4- and 99mTc-DTPA; both showed significant decreases from the 2nd wk postirradiation onward. In comparison, CT and chest roentgenogram did not become abnormal until 7.1 +/- 2.8 (SD) and 8.2 +/- 2.6 wk, respectively. Doses of 1,000 and 500 cGy produced reversible decreases in 99mTcO4- clearance. Lung morphology showed definite changes of radiation pneumonitis after 2,000 and 1,000 cGy but not after 500 cGy at approximately 9, 17, and 12 wk postirradiation, respectively. These results suggest that dose-dependent changes in pulmonary physiology may precede obvious structural alterations in radiation lung injury.
To investigate the effect of high-frequency oscillatory ventilation (HFOV) on the pulmonary epithelial permeability, we measured the clearance rate of nebulized sodium pertechnetate (99mTcO4-) and diethylenetriaminepentaacetate (99mTc-DTPA) before and after a 4-h period of mechanical ventilation in anesthetized mongrel dogs. The animals also underwent experiments with 4 h of spontaneous breathing (SB) and intermittent positive-pressure ventilation (IPPV) with and without addition of positive end-expiratory pressure (PEEP) for comparison. After IPPV and SB there was no change in the clearance rate of either 99mTcO4- or 99mTc-DTPA. After IPPV + PEEP and HPOV (8 and 16 Hz), there was an increase in the clearance rate of 99mTc-DTPA, but an increase in clearance rate of 99mTcO4- was seen after IPPV + PEEP only. In a separate group of dogs an increase in end-tidal lung volume was demonstrated after 4 h of ventilation with IPPV + PEEP (but not after HFOV), and this may account for the measured increase in 99mTcO4- clearance. We conclude that an increase in 99mTc-DTPA clearance rate after HFOV signifies an increase in pulmonary epithelial permeability, possibly through the mechanism of damage to the intercellular junctions during HFOV.
We delivered 20 Gy irradiation in one fraction to a 6 cm segment of trachea in 11 dogs. Tracheal mucous transport was studied before and whenever possible at weekly intervals after irradiation using a gamma camera system and 99m technetium labeled sulfur colloid. Ten of the eleven animals were sacrificed at three different time intervals (1-2, 15-16 and 30-34 weeks) post-irradiation, and the tracheal epithelium removed for studies using Ussing chambers followed by preparation for microscopic analysis. Mucous transport along the length of the trachea was normal before irradiation, but following irradiation it became abnormal in the irradiated zone. Compared to the epithelium from the cranial and caudal segments, the irradiated epithelium had similar bioelectric measurements (potential difference, short-circuit current and resistance) and mannitol permeability. Also, the changes in the bioelectric measurements following indomethacin (10(-6) M) and epinephrine (10(-6) M) used sequentially, were similar in both the control and irradiated tissues. Scanning electron microscopic analysis of the irradiated zone revealed patches of nonciliated epithelial cells among the ciliates. We conclude that irradiation caused a persistent replacement of ciliated cells with nonciliates throughout the entire study period and that this alteration impaired mucous transport but did not affect epithelial ion secretion or barrier function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.