In this research, the Y2O3 layer is doped with the zirconium through co-sputtering and rapid thermal annealing (RTA) at 550°C, 700°C, and 850°C. Then the Al electrode is deposited to generate two kinds of structures, Al/ZrN/ Y2O3/ Y2O3+Zr/p-Si and Al/ZrN/ Y2O3+Zr/ Y2O3/p-Si. According to the XRD results, when Zr was doped on the upper layer, the crystallization phenomenon was more significant than Zr was at the bottom layer, meaning that Zr may influence the diffusion of the oxygen. The AFM also shows that the surface roughness of Zr has worse performance. For the electrical property, the influence to overall leakage current is increased because the equivalent oxide thickness (EOT) is thinner.
It is demonstrated that the strained-Si can enhance the channel stress with the contact etching stop layer (CESL) stressor. In addition to CESL, this article also includes ONO spacer and investigates the impact of ONO spacer thickness on the channel stress. It is found that the channel stress increases when the nitride thickness of the ONO spacer increases. On the other hand, the stress distribution is simulated and analyzed for the devices with or without CESL stressor. Generally speaking, based on the simulation results, the channel stress of MOSFET devices increases when the nitride stressor of ONO spacer and/or CESL increases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.