Improvement in growth and fatness traits are the main objectives in pig all breeding programs. Tenth rib backfat thickness (10RIBBFT) and days to 100 kg (D100), which are good predictors of carcass lean content and growth rate, respectively, are economically important traits and also main breeding target traits in pigs. To investigate the genetic mechanisms of 10RIBBFT and D100 of pigs, we sampled 1,137 and 888 pigs from 2 Yorkshire populations of American and British origin, respectively, and conducted genome-wide association study (GWAS) through combined analysis and meta-analysis, to identify SNPs associated with 10RIBBFT and D100. A total of 11 and 7 significant SNPs were identified by combined analysis for 10RIBBFT and D100, respectively. And in meta-analysis, 8 and 7 significant SNPs were identified for 10RIBBFT and D100, respectively. Among them, 6 and 5 common significant SNPs in two analysis results were, respectively, identified associated with 10RIBBFT and D100, and correspondingly explained 2.09% and 0.52% of the additive genetic variance of 10RIBBFT and D100. Further bioinformatics analysis revealed 10 genes harboring or close to these common significant SNPs, 5 for 10RIBBFT and 5 for D100. In particular, Gene Ontology analysis highlighted 6 genes, PCK1, ANGPTL3, EEF1A2, TNFAIP8L3, PITX2, and PLA2G12, as promising candidate genes relevant with backfat thickness and growth. PCK1, ANGPTL3, EEF1A2, and TNFAIP8L3 could influence backfat thickness through phospholipid transport, regulation of lipid metabolic process through the glycerophospholipid biosynthesis and metabolism pathway, the metabolism of lipids and lipoproteins pathway. PITX2 has a crucial role in skeletal muscle tissue development and animal organ morphogenesis, and PLA2G12A plays a role in the lipid catabolic and phospholipid catabolic processes, which both are involved in the body weight pathway. All these candidate genes could directly or indirectly influence fat production and growth in Yorkshire pigs. Our findings provide novel insights into the genetic basis of growth and fatness traits in pigs. The candidate genes for D100 and 10RIBBFT are worthy of further investigation.
Pulmonary artery hypertension (PAH) is a chronic disease associated with enhanced proliferation of pulmonary artery smooth muscle cells (PASMCs) and dysfunctional mitochondria, which was with limited therapeutic options. It has been proved that cannabidiol (CBD) had antioxidant effects in many cardiovascular diseases, whereas the efficacy of CBD in PAH is unknown. To defined the effect of CBD in PAH, we explored the functions of CBD in both PASMCs proliferation test in vitro, and preventive and therapeutic PAH rodent models in vivo. The roles of CBD in mitochondria function and the oxidant stress were assessed in human PASMCs and PAH mice. We found that CBD significantly inhibited hyperproliferation of hypoxia-induced PASMCs, and intragastrically administered CBD could reverse the pathological changes in both Sugen-hypoxia and MCT- induced PAH mice models. Mechanical analysis demonstrated that CBD alleviated PAH by recovering mitochondrial energy metabolism, normalizing the hypoxia-induced oxidant stress, inhibiting abnormal glycolysis and lactate accumulation in cannabinoids receptors-independent manner. Thus, CBD could be a potential drug for PAH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.