Several dietary factors have been suspected to play a role in the development of advanced islet autoimmunity (IA) and/or type 1 diabetes (T1D), but the evidence is fragmentary. A prospective population-based cohort of 6081 Finnish newborn infants with HLA-DQB1 -conferred susceptibility to T1D was followed up to 15 years of age. Diabetes-associated autoantibodies and diet were assessed at 3- to 12-month intervals. We aimed to study the association between consumption of selected foods and the development of advanced IA longitudinally with Cox regression models (CRM), basic joint models (JM) and joint latent class mixed models (JLCMM). The associations of these foods to T1D risk were also studied to investigate consistency between alternative endpoints. The JM showed a marginal association between meat consumption and advanced IA: the hazard ratio adjusted for selected confounding factors was 1.06 (95% CI: 1.00, 1.12). The JLCMM identified two classes in the consumption trajectories of fish and a marginal protective association for high consumers compared to low consumers: the adjusted hazard ratio was 0.68 (0.44, 1.05). Similar findings were obtained for T1D risk with adjusted hazard ratios of 1.13 (1.02, 1.24) for meat and 0.45 (0.23, 0.86) for fish consumption. Estimates from the CRMs were closer to unity and CIs were narrower compared to the JMs. Findings indicate that intake of meat might be directly and fish inversely associated with the development of advanced IA and T1D, and that disease hazards in longitudinal nutritional epidemiology are more appropriately modeled by joint models than with naive approaches.
Several prospective studies have shown an association between cows’ milk consumption and the risk of islet autoimmunity and/or type 1 diabetes. We wanted to study whether processing of milk plays a role. A population-based birth cohort of 6081 children with HLA-DQB1-conferred risk to type 1 diabetes was followed until the age of 15 years. We included 5545 children in the analyses. Food records were completed at the ages of 3 and 6 months and 1, 2, 3, 4 and 6 years, and diabetes-associated autoantibodies were measured at 3–12-month intervals. For milk products in the food composition database, we used conventional and processing-based classifications. We analysed the data using a joint model for longitudinal and time-to-event data. By the age of 6 years, islet autoimmunity developed in 246 children. Consumption of all cows’ milk products together (energy-adjusted hazard ratio 1·06; 95 % CI 1·02, 1·11; P = 0·003), non-fermented milk products (1·06; 95 % CI 1·01, 1·10; P = 0·011) and fermented milk products (1·35; 95 % CI 1·10, 1·67; P = 0·005) was associated with an increased risk of islet autoimmunity. The early milk consumption was not associated with the risk beyond 6 years. We observed no clear differences based on milk homogenisation and heat treatment. Our results are consistent with the previous studies, which indicate that high milk consumption may cause islet autoimmunity in children at increased genetic risk. The study did not identify any specific type of milk processing that would clearly stand out as a sole risk factor apart from other milk products.
Background and objective Emergency Department (ED) overcrowding is a chronic international issue that is associated with adverse treatment outcomes. Accurate forecasts of future service demand would enable intelligent resource allocation that could alleviate the problem. There has been continued academic interest in ED forecasting but the number of used explanatory variables has been low, limited mainly to calendar and weather variables. In this study we investigate whether predictive accuracy of next day arrivals could be enhanced using high number of potentially relevant explanatory variables and document two feature selection processes that aim to identify which subset of variables is associated with number of next day arrivals. Performance of such predictions over longer horizons is also shown. Methods We extracted numbers of total daily arrivals from Tampere University Hospital ED between the time period of June 1, 2015 and June 19, 2019. 158 potential explanatory variables were collected from multiple data sources consisting not only of weather and calendar variables but also an extensive list of local public events, numbers of website visits to two hospital domains, numbers of available hospital beds in 33 local hospitals or health centres and Google trends searches for the ED. We used two feature selection processes: Simulated Annealing (SA) and Floating Search (FS) with Recursive Least Squares (RLS) and Least Mean Squares (LMS). Performance of these approaches was compared against autoregressive integrated moving average (ARIMA), regression with ARIMA errors (ARIMAX) and Random Forest (RF). Mean Absolute Percentage Error (MAPE) was used as the main error metric. Results Calendar variables, load of secondary care facilities and local public events were dominant in the identified predictive features. RLS-SA and RLS-FA provided slightly better accuracy compared ARIMA. ARIMAX was the most accurate model but the difference between RLS-SA and RLS-FA was not statistically significant. Conclusions Our study provides new insight into potential underlying factors associated with number of next day presentations. It also suggests that predictive accuracy of next day arrivals can be increased using high-dimensional feature selection approach when compared to both univariate and nonfiltered high-dimensional approach. Performance over multiple horizons was similar with a gradual decline for longer horizons. However, outperforming ARIMAX remains a challenge when working with daily data. Future work should focus on enhancing the feature selection mechanism, investigating its applicability to other domains and in identifying other potentially relevant explanatory variables.
Objective Growth-based determination of pubertal onset timing would be cheap and practical. We aimed to determine this timing based on pubertal growth markers. Secondary aims were to estimate the differences in growth between cohorts and identify the role of overweight in onset timing. Design This multicohort study includes data from three Finnish cohorts—the Type 1 Diabetes Prediction and Prevention (DIPP, N = 2,825) Study, the Special Turku Coronary Risk Factor Intervention Project (STRIP, N = 711), and the Boy cohort (N = 66). Children were monitored for growth and Tanner staging (except in DIPP). Methods The growth data were analyzed using a Super-Imposition by Translation And Rotation growth curve model, and pubertal onset analyses were run using a time-to-pubertal onset model. Results The time-to-pubertal onset model used age at peak height velocity (aPHV), peak height velocity (PHV), and overweight status as covariates, with interaction between aPHV and overweight status for girls, and succeeded in determining the onset timing. Cross-validation showed a good agreement (71.0% for girls, 77.0% for boys) between the observed and predicted onset timings. Children in STRIP were taller overall (girls: 1.7 [95% CI: 0.9, 2.5] cm, boys: 1.0 [0.3, 2.2] cm) and had higher PHV values (girls: 0.13 [0.02, 0.25] cm/year, boys: 0.35 [0.21, 0.49] cm/year) than those in DIPP. Boys in the Boy cohort were taller (2.3 [0.3, 4.2] cm) compared with DIPP. Overweight girls showed pubertal onset at 1.0 [0.7, 1.4] year earlier compared with other girls. In boys, there was no such difference. Conclusions The novel modeling approach provides an opportunity to evaluate the Tanner breast/genital stage–based pubertal onset timing in cohort studies including longitudinal data on growth but lacking pubertal follow-up.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.