Today, the increasing amount of waste is a growing ecological and financial problem. Another issue is the need to limit the share of controllable sources powered by fossil fuels. A hybrid generation system (HGS) is proposed to solve both problems. The system consists of renewable energy sources (RES) and a waste gasification system. Contrary to many papers, it is proposed to include syngas storage and use gas turbines as balancing sources. The HGS was modeled, and electricity generation, capacity factors, and efficiencies were calculated. The economic (LCOE and PP) and environmental parameters (CO2 emission and reduction) were analyzed and calculated for different RES capacities. The results show that the proposed HGS covered 45.7–80% of municipal demand. The HGS was characterized by high CO2 emissions, due to the low efficiency of gasification-gas turbine installation and the need to compress syngas. However, the HGS can be environmentally beneficial due to the reduction in waste disposal in landfills. The LCOE was EUR 174–191 with a minimum at the RES capacity of 14 MW. Any change in waste disposal costs and emission allowances would cause significant changes in the LCOE. It was found that it can be beneficial to use a gasification system as a balancing source in a HGS.
Energy transition forcing a change in the structure of the electricity generation system is a particularly difficult task in countries such as Poland, where the dominant source of energy is fossil fuels. Due to the nature of renewable sources (stochastic and seasonally variable), it is necessary to study their impact on the power system. Much research was conducted on this subject. They consider modelling power systems in terms of dealing with an increasing amount of renewable energy sources, stabilization of electricity generation or environmental aspects. This article examines one of the key sources of future power systems—offshore wind turbines (OWT). The influence of offshore wind sources on the power system in the fields of stability of generation, methods of regulatory strategies, and economics were examined. One of the aspects that are less considered is the correlation of energy production in OWT with energy demand and with generation in other renewable energy sources, especially in the region of the southern Baltic Sea and the distribution of energy demand in countries such as Poland. The key aspect of the research is to fill this gap. The obtained results indicate that the average monthly power generation in OWT is strongly positively correlated with the demand, and the hourly average is positively correlated moderately. Correlation between generation in OWT and photovoltaic sources is very high negative, and between onshore and offshore wind turbines is highly positive. The study indicates that the OWT has a significant potential for the development and replacement of conventional sources, due to the very high capacity and a positive correlation with demand. Moreover, future offshore wind farms can cooperate with photovoltaic sources as these sources complement each other. On the other hand, a significant saturation of the system with offshore and onshore wind sources may pose a threat to the power system due to their positive correlation.
This paper presents the results of modeling and analysis of hybrid generation system (HSW). The system contains municipal waste gasification installation, photovoltaic (PV) system and wind farm. The system cooperates with the power system to provide electrical energy to the communal consumer. The consumer is characterized by a maximum power demand equal to 10 MW and an annual energy demand of 42.351 GWh. Generation with renewable sources was modelled using meteorological data. Moreover, in order to cover the demand with the level of generation, gas storage was used. Next, the three-stage gasification model is presented. It was validated, using the literature data, and its efficiency and gas composition have been calculated and are presented. Furthermore, energetic and economic analysis have been conducted. Installed power usage factor and efficiency of energy sources were calculated. Gross and net energy generation of hybrid generation systems have been computed and are presented. In this analysis, energy consumption by gas compressing was included. The analyzed HSW covered 54.5% of the demand. Most of this (30.2%) was covered by the gasification system. However, the system was characterized by a low net efficiency equal to 16.7%. Diagrams of power generation in each source and storage fill chart are presented. In the 56 economic part of the analysis, results of calculations of net present value and payback period are published in order to examine the profitability of the system. The cost of electricity was 490-1050 PLN/MWh. The results show that municipal waste gasification can be used as a part of HSW to adjust the generation with the demand. Moreover, it can be economically advantageous. However, it is characterized by high CO 2 emission and low efficiency of the waste processing system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.