We found neural crest stem cells (NCSCs) in the adult gut. Postnatal gut NCSCs were isolated by flow-cytometry and compared to fetal gut NCSCs. They self-renewed extensively in culture but less than fetal gut NCSCs. Postnatal gut NCSCs made neurons that expressed a variety of neurotransmitters but lost the ability to make certain subtypes of neurons that are generated during fetal development. Postnatal gut NCSCs also differed in their responsiveness to lineage determination factors, affecting cell fate determination in vivo and possibly explaining their reduced neuronal subtype potential. These perinatal changes in gut NCSCs parallel perinatal changes in hematopoietic stem cells, suggesting that stem cells in different tissues undergo similar developmental transitions. The persistence of NCSCs in the adult PNS opens up new possibilities for regeneration after injury or disease.
Melanoma is a tumor of transformed melanocytes, which are derived from the embryonic neural crest. It is unknown to what extent the programs regulating neural crest development interact with mutations in the BRAF oncogene, the gene most commonly mutated in human melanoma1. We have utilized the zebrafish embryo to identify initiating transcriptional events upon BRAFV600E activation in the neural crest lineage. Transgenic mitf-BRAFV600E;p53-/- zebrafish embryos demonstrate a gene signature enriched for markers of multipotent neural crest cells, and exhibit a failure of terminal differentiation of neural crest progenitors. To determine if these early transcriptional events were important for melanoma pathogenesis, we performed a chemical genetic screen to identify small molecule suppressors of the neural crest lineage, which were then tested for effects in melanoma. One class of compounds, inhibitors of dihydroorotate dehydrogenase (DHODH) such as leflunomide, led to an almost complete abrogation of neural crest development in the zebrafish and a reduction in self-renewal of mammalian neural crest stem cells. Leflunomide exerts these effects by inhibiting transcriptional elongation of genes required for neural crest development and melanoma growth. When used alone or in combination with a specific inhibitor of the BRAFV600E oncogene, DHODH inhibition led to a marked decrease in melanoma growth both in vitro and in mouse xenograft studies. Taken together, these studies highlight developmental pathways in neural crest cells that have direct bearing upon subsequent melanoma formation.
Neural crest stem cells (NCSCs) persist in peripheral nerves throughout late gestation but their function is unknown. Current models of nerve development only consider the generation of Schwann cells from neural crest, but the presence of NCSCs raises the possibility of multilineage differentiation. We performed Crerecombinase fate mapping to determine which nerve cells are neural crest derived. Endoneurial fibroblasts, in addition to myelinating and non-myelinating Schwann cells, were neural crest derived, whereas perineurial cells, pericytes and endothelial cells were not. This identified endoneurial fibroblasts as a novel neural crest derivative, and demonstrated that trunk neural crest does give rise to fibroblasts in vivo, consistent with previous studies of trunk NCSCs in culture. The multilineage differentiation of NCSCs into glial and non-glial derivatives in the developing nerve appears to be regulated by neuregulin, notch ligands, and bone morphogenic proteins, as these factors are expressed in the developing nerve, and cause nerve NCSCs to generate Schwann cells and fibroblasts, but not neurons, in culture. Nerve development is thus more complex than was previously thought, involving NCSC self-renewal, lineage commitment and multilineage differentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.