Wound healing is a highly evolved defense mechanism against infection and further injury. It is a complex process involving multiple cell types and biological pathways. Mammalian adult cutaneous wound healing is mediated by a fibroproliferative response leading to scar formation. In contrast, early to mid-gestational fetal cutaneous wound healing is more akin to regeneration and occurs without scar formation. This early observation has led to extensive research seeking to unlock the mechanism underlying fetal scarless regenerative repair. Building upon recent advances in biomaterials and stem cell applications, tissue engineering approaches are working towards a recapitulation of this phenomenon. In this review, we describe the elements that distinguish fetal scarless and adult scarring wound healing, and discuss current trends in tissue engineering aimed at achieving scarless tissue regeneration.
Activation of prothrombin by factor X(a) requires proteolysis of two bonds and is commonly assumed to occur via by two parallel, sequential pathways. Hydrolysis of Arg(322)-Ile(323) produces meizothrombin (MzII(a)) as an intermediate, while hydrolysis of Arg(273)-Thr(274) produces prethrombin 2-fragment 1.2 (Pre2-F1.2). Activation by human factor X(a) of human prothrombin was examined in the absence of factor V(a) and in the absence and presence of bovine phosphatidylserine (PS)/palmitoyloleoylphosphatidylcholine (25:75) membranes. Four sets of data were collected: fluorescence of an active site probe (DAPA) was sensitive to thrombin, MzII(a), and Pre2-F1.2; a synthetic substrate (S-2238) detected thrombin or MzII(a) active site formation; and SDS-PAGE detected both intermediates and thrombin. The fluorescence data provided an internal check on the active site and SDS-PAGE measurements. Kinetic constants for conversion of intermediates to thrombin were measured directly in the absence of membranes. Both MzII(a) and Pre2-F1.2 were consumed rapidly in the presence of membranes, so kinetic constants for these reactions had to be estimated as adjustable parameters by fitting three data sets (thrombin and MzII(a) active site formation and Pre2 appearance) simultaneously to the parallel-sequential model. In the absence of membranes, this model successfully described the data and yielded a rate constant, 44 M(-1) s(-1), for the rate of MzII(a) formation. By contrast, the parallel-sequential model could not describe prothrombin activation in the presence of optimal concentrations of PS-containing membranes without assuming that a pathway existed for converting prothrombin directly to thrombin without release from the membrane-enzyme complex. The data suggest that PS membranes (1) regulate factor X(a), (2) alter the substrate specificity of factor X(a) to favor the meizothrombin intermediate, and (3) "channel" intermediate (MzII(a) or Pre2-F1.2) back to the active site of factor X(a) for rapid conversion to thrombin.
SummaryElevated procoagulant levels have been correlated with increased thrombin generation in vitro and with increased venous thromboembolism (VTE) risk in epidemiological studies. Thrombin generation tests are increasingly being employed as a high throughput method to provide a global measure of procoagulant activity in plasma samples. The objective of this study was to distinguish the effects of assay conditions [tissue factor (TF), thrombomodulin, platelets/lipids] and factor levels on thrombin generation parameters, and determine the conditions and parameters with the highest sensitivity and specificity for detecting elevated factor levels. Thrombin generation was measured using calibrated automated thrombography (CAT) in corn trypsin inhibitor (CTI)-treated plateletfree plasma (PFP) and platelet-rich plasma (PRP). Statistical analysis was performed using logarithms of observed values with analysis of variance that accounted for experiment and treatment. The relative sensitivity of lag time (LT), time to peak (TTP), peak height and endogenous thrombin potential (ETP) to elevated factors XI, IX, VIII, X, and prothrombin was as follows: PFP initiated with 1 pM TF > PFP initiated with 5 pM TF > PRP initiated with 1 pM TF. For all conditions, inclusion of thrombomodulin prolonged the LT and decreased the peak and ETP; however, addition of thrombomodulin did not increase the ability of CAT to detect elevated levels of individual procoagulant factors. In conclusion, CAT conditions differentially affected the sensitivity of thrombin generation to elevated factor levels. Monitoring the peak height and/or ETP following initiation of clotting in PFP with 1 pM TF was most likely to detect hypercoagulability due to increased procoagulant factor levels.
A coculture system that routinely produces a group of cells from adult peripheral blood is presented. A subset of CD45− cells with a fibroblastic morphology was isolated. The CD45− fibroblastic cells are the first peripheral blood‐derived cells that fulfill the criteria of mesenchymal stem cells as defined by the International Society for Cellular Therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.