Abstract:We study the holographic entanglement entropy of spatial regions with corners in the AdS 4 /BCFT 3 correspondence by considering three dimensional boundary conformal field theories whose boundary is a timelike plane. We compute analytically the corner function corresponding to an infinite wedge having one edge on the boundary. A relation between this corner function and the holographic one point function of the stress tensor is observed. An analytic expression for the corner function of an infinite wedge having only its tip on the boundary is also provided. This formula requires to find the global minimum among two extrema of the area functional. The corresponding critical configurations of corners are studied. The results have been checked against a numerical analysis performed by computing the area of the minimal surfaces anchored to some finite domains containing corners.
We study co-dimension two monodromy defects in theories of conformally coupled scalars and free Dirac fermions in arbitrary d dimensions. We characterise this family of conformal defects by computing the one-point functions of the stress-tensor and conserved current for Abelian flavour symmetries as well as two-point functions of the displacement operator. In the case of d = 4, the normalisation of these correlation functions are related to defect Weyl anomaly coefficients, and thus provide crucial information about the defect conformal field theory. We provide explicit checks on the values of the defect central charges by calculating the universal part of the defect contribution to entanglement entropy, and further, we use our results to extract the universal part of the vacuum Rényi entropy. Moreover, we leverage the non-supersymmetric free field results to compute a novel defect Weyl anomaly coefficient in a d = 4 theory of free $$ \mathcal{N} $$ N = 2 hypermultiplets. Including singular modes in the defect operator product expansion of fundamental fields, we identify notable relevant deformations in the singular defect theories and show that they trigger a renormalisation group flow towards an IR fixed point with the most regular defect OPE. We also study Gukov-Witten defects in free d = 4 Maxwell theory and show that their central charges vanish.
In conformal field theories (CFTs) of dimension d > 3, two-dimensional (2d) conformal defects are characterised in part by central charges defined via the defect's contribution to the trace anomaly. However, in general for interacting CFTs these central charges are difficult to calculate. For superconformal 2d defects in supersymmetric (SUSY) CFTs (SCFTs), we show how to compute these defect central charges from the SUSY partition function either on S d with defect along S 2 , or on S 1 × S d−1 with defect along S 1 × S 1. In the latter case we propose that defect central charges appear in an overall normalisation factor, as part of the SUSY Casimir energy. For 2d half-BPS defects in 4d N = 2 SCFTs and in the 6d N = (2, 0) SCFT we obtain novel, exact results for defect central charges using existing results for partition functions computed using SUSY localisation, SUSY indices, and correspondences to 2d Liouville, Toda, and q-deformed Yang-Mills theories. Some of our results for defect central charges agree with those obtained previously via holography, showing that the latter are not just large-N and/or strongcoupling limits, but are exact. Our methods can be straightforwardly extended to other superconformal defects, of various codimension, as we demonstrate for a 4d defect in the 6d N = (2, 0) SCFT.
We study the holographic entanglement entropy of spatial regions having arbitrary shapes in the AdS 4 /BCFT 3 correspondence with static gravitational backgrounds, focusing on the subleading term with respect to the area law term in its expansion as the UV cutoff vanishes. An analytic expression depending on the unit vector normal to the minimal area surface anchored to the entangling curve is obtained. When the bulk spacetime is a part of AdS 4 , this formula becomes the Willmore functional with a proper boundary term evaluated on the minimal surface viewed as a submanifold of a three dimensional flat Euclidean space with boundary. For some smooth domains, the analytic expressions of the finite term are reproduced, including the case of a disk disjoint from a boundary which is either flat or circular. When the spatial region contains corners adjacent to the boundary, the subleading term is a logarithmic divergence whose coefficient is determined by a corner function that is known analytically, and this result is also recovered. A numerical approach is employed to construct extremal surfaces anchored to entangling curves with arbitrary shapes. This analysis is used both to check some analytic results and to find numerically the finite term of the holographic entanglement entropy for some ellipses at finite distance from a flat boundary.
Massless excitations at the surface of three-dimensional time-reversal invariant topological insulators possess both fermionic and bosonic descriptions, originating from band theory and hydrodynamic BF theory, respectively. We analyze the corresponding field theories of the Dirac fermion and compactified boson and compute their partition functions on the three-dimensional torus geometry. We then find some non-dynamic exact properties of bosonization in (2+1) dimensions, regarding fermion parity and spin sectors. Using these results, we extend the Fu-Kane-Mele stability argument to fractional topological insulators in three dimensions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.