Urinary methoxyphenols have been proposed as biomarkers for woodsmoke exposure, but the relationship between exposure and urinary methoxyphenol concentrations has not been characterized. We collected personal particulate matter2.5 and urine samples from 9 adults experimentally exposed to smoke from an open wood fire to characterize this relationship. Personal exposures (PM2.5 mean 1500 microg/ m3) varied 3.5-fold. Twenty-two methoxyphenols, levoglucosan, and 17 polynuclear hydrocarbons were quantified by gas chromatography/mass spectrometry assays for personal filter samples and urine samples. Most methoxyphenols had measurable preexposure levels. Propylguaiacol, syringol, methylsyringol, ethylsyringol, and propylsyringol had peak urinary concentrations after the woodsmoke exposure. Eight subjects had peak urinary elimination of methoxyphenols within 6 h (t1/2 3-5 h), whereas one had delayed elimination. Several metrics for urinary excretion were evaluated. Analyte concentration was greatly affected by diuresis. Excretion rate and analyte concentrations normalized by creatinine gave a clearer signal and were equivalent in predictive ability. Twelve-hour average creatinine-normalized concentrations of each of the 5 methoxyphenols gave a Pearson correlation > or = 0.8 with their particle-phase concentration. The sum of urinary concentrations for the 5 methoxyphenols versus levoglucosan on personal filters gave a regression coefficient of 0.75. This sum versus PM2.5 gave a regression coefficient of 0.79. The intercept of this regression suggests that the threshold for detection of an acute exposure event would be approximately 760 microg/m3 particulate matter from woodsmoke. The signal-to-noise (12-h postexposure average/preexposure average) ranged from 1.1 to 8 for the 5 methoxyphenols. Analysis of multiple compounds provided assurance that elevations were not artifactual due to food or other products.
Biologic sample collection in wild cetacean populations is challenging. Most information on toxicant levels is obtained from blubber biopsy samples; however, sample collection is invasive and strictly regulated under permit, thus limiting sample numbers. Methods are needed to monitor toxicant levels that increase temporal and repeat sampling of individuals for population health and recovery models. The objective of this study was to optimize measuring trace levels (parts per billion) of persistent organic pollutants (POPs), namely polychlorinated-biphenyls (PCBs), polybrominated-diphenyl-ethers (PBDEs), dichlorodiphenyltrichloroethanes (DDTs), and hexachlorocyclobenzene, in killer whale scat (fecal) samples. Archival scat samples, initially collected, lyophilized, and extracted with 70 % ethanol for hormone analyses, were used to analyze POP concentrations. The residual pellet was extracted and analyzed using gas chromatography coupled with mass spectrometry. Method detection limits ranged from 11 to 125 ng/g dry weight. The described method is suitable for p,p'-DDE, PCBs-138, 153, 180, and 187, and PBDEs-47 and 100; other POPs were below the limit of detection. We applied this method to 126 scat samples collected from Southern Resident killer whales. Scat samples from 22 adult whales also had known POP concentrations in blubber and demonstrated significant correlations (p < 0.01) between matrices across target analytes. Overall, the scat toxicant measures matched previously reported patterns from blubber samples of decreased levels in reproductive-age females and a decreased p,p'-DDE/∑PCB ratio in J-pod. Measuring toxicants in scat samples provides an unprecedented opportunity to noninvasively evaluate contaminant levels in wild cetacean populations; these data have the prospect to provide meaningful information for vital management decisions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.