An improved method for the analysis of caffeine in foods by HPLC was validated by measuring several analytical parameters. The caffeine contents of 1202 products available from Korean markets were analysed. A consumption study was conducted by using data from the Korea National Health and Nutrition Examination Survey (KNHANES), 2010-12, to estimate the caffeine intakes of the Korean population. The mean intakes of caffeine from all sources in the general population and consumers were 67.8 and 102.6 mg day(-1) for all age groups, respectively. The 95th percentile intakes of the general population and consumers were 250.7 and 313.7 mg day(-1), respectively. In those aged 30-49 years, the caffeine intakes of the general population and consumers were highest at 25.5% (101.8 mg kg(-1) day(-1)) and 36.6% (0.9 mg kg(-1) day(-1)), respectively, compared with the maximum recommended daily intake (400 mg day(-1)) for adults. In the general population, the main contributors to the total caffeine intake were carbonated beverage for the younger age groups and coffee for the adults. These data provide a current perspective on caffeine intake in the Korean population.
A simple GC-MS method has been developed and validated for the direct determination of hexamethylenetetramine (HMT). The separation of HMT was performed using a MXT-1 column. The calibration curve was linear over the concentration range 0.1-25 μg/mL, with a good correlation coefficient ( =0.9996). The recoveries of HMT from foods spiked at 1, 5, and 10 μg/g ranged from 91.7% to 115.2%. Intra-day (=5) and inter-day (=5) precision were less than 7%. The limit of detection and the limit of quantification of the method were 0.05 and 0.15 μg/mL, respectively. The uncertainties associated with food matrix and calibration contributed most to the overall expanded uncertainty. The method validation data indicated that quantitative method could be applied to the direct determination of non-hydrolyzed HMT in foods.
To date there have been no reports of methods to determine Tinopal CBS-X. We developed a rapid and simple method to determine the Tinopal CBS-X content in rice noodles and rice papers using HPLC equipped with fluorescence detection. Heating the rice noodles and rice papers to 80°C after adding 75% methanol solution induced the release of Tinopal CBS-X from processed rice products. Tinopal CBS-X was separated using an isocratic mobile phase comprising 50% acetonitrile/water containing 0.4% tetrabutyl ammonium hydrogen sulphate at pH 8.0. The samples suspected to be positive by HPLC analysis were then confirmed by LC-MS/MS analysis. This study also investigated the Tinopal CBS-X content of three rice noodle products and two rice papers. The limits of quantification for rice papers and rice noodles were 1.58 and 1.51 µg kg(-1), respectively, and their correlation curves showed good linearity with r(2) ≥ 0.9997 and ≥ 0.9998, respectively. Moreover, rice papers had recoveries of 70.3-83.3% with precision ranging from 5.0% to 7.9%, whereas rice noodles had slightly lower recoveries of 63.4-78.7% and precisions of 8.5-11.5%. Only one rice noodle product contained Tinopal CBS-X, at around 2.1 mg kg(-1), whereas it was not detected in four other samples. Consequently, Tinopal CBS-X from rice noodles and rice papers can be successfully detected using the developed pre-treatment and ion-pairing HPLC system coupled with fluorescence detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.