IntroductionSerum uric acid (UA) has been known to have a positive association with blood pressure (BP). However, the relationship between serum UA and BP in different age groups is unclear.MethodsA total of 45,098 Koreans who underwent health examinations at Korea Association of Health Promotion with no history of taking drugs related with UA and/or BP were analyzed for determining the relationship between serum UA and BP.ResultsIn men <40, serum UA was significantly associated with systolic (β = 0.25, p = 0.002) and diastolic BP (β = 0.41, p < 0.001) after adjustment for age, diabetes, dyslipidemia, body mass index, and estimated glomerular filtration rate. Men between ages 40 and 59 showed similar results regarding diastolic BP. The association between serum UA and BP was stronger in women <40 (β = 0.54, p < 0.001 for systolic BP; β = 0.65, p < 0.001 for diastolic BP) and in between 40 and 59 (β = 0.51, p < 0.001 for diastolic BP). The association was not significant in men and women ≥60. The odds ratios (ORs) of hyperuricemia for hypertension were 1.25 (95% confidence interval [CI], 1.08 to 1.45; p = 0.003) and 1.33 (95% CI, 1.11 to 1.60; p = 0.002) in men <40 and in between 40 and 59, respectively, in the multivariate analysis. The OR was 2.60 (95% CI, 1.37 to 4.94; p = 0.0034) in women <40. The relationship between hyperuricemia and hypertension was not significant in other age/gender groups.DiscussionIn contrast to the elderly of 60 and over, the non-elderly showed significant associations between serum UA and BP.
The presented automatic algorithm enables robust and fast detection of lumen contours and stent struts and provides quantitative measurements of PD and NT. In addition, the algorithm was validated using various clinical cases to demonstrate its reliability. Therefore, this technique can be effectively utilized for clinical trials on stent-related side effects, including in-stent thrombosis and in-stent restenosis.
Macrophages mediate atheroma expansion and disruption, and denote high-risk arterial plaques. Therefore, they are substantially gaining importance as a diagnostic imaging target for the detection of rupture-prone plaques. Here, we developed an injectable near-infrared fluorescence (NIRF) probe by chemically conjugating thiolated glycol chitosan with cholesteryl chloroformate, NIRF dye (cyanine 5.5 or 7), and maleimide-polyethylene glycol-mannose as mannose receptor binding ligands to specifically target a subset of macrophages abundant in high-risk plaques. This probe showed high affinity to mannose receptors, low toxicity, and allowed the direct visualization of plaque macrophages in murine carotid atheroma. After the scale-up of the MMR-NIRF probe, the administration of the probe facilitated in vivo intravascular imaging of plaque inflammation in coronary-sized vessels of atheromatous rabbits using a custom-built dual-modal optical coherence tomography (OCT)-NIRF catheter-based imaging system. This novel imaging approach represents a potential imaging strategy enabling the identification of high-risk plaques in vivo and holds promise for future clinical implications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.