The last decade has witnessed significant progress in two-dimensional van der Waals (2D vdW) materials research; however, a number of challenges remain for their practical applications. The most significant challenge for 2D vdW materials is the control of the early stages of nucleation and growth of the material on preferred surfaces to eventually create large grains with digital thickness controllability, which will enable their incorporation into high-performance electronic and optoelectronic devices. This Perspective discusses the technical challenges to be overcome in the metal–organic chemical vapor deposition (MOCVD) growth of 2D group 6 transition metal dichalcogenide (TMD) atomic crystals and their heterostructures, as well as future research aspects in vdW epitaxy for 2D TMDs via MOCVD. In addition, we encourage the traditional MOCVD community to apply their expertise in the field of “2D vdW materials,” which will continue to grow at an exponential rate.
As the elements of integrated circuits are downsized to the nanoscale, the current Cu‐based interconnects are facing limitations due to increased resistivity and decreased current‐carrying capacity because of scaling. Here, the bottom‐up synthesis of single‐crystalline WTe2 nanobelts and low‐ and high‐field electrical characterization of nanoscale interconnect test structures in various ambient conditions are reported. Unlike exfoliated flakes obtained by the top‐down approach, the bottom‐up growth mode of WTe2 nanobelts allows systemic characterization of the electrical properties of WTe2 single crystals as a function of channel dimensions. Using a 1D heat transport model and a power law, it is determined that the breakdown of WTe2 devices under vacuum and with AlOx capping layer follows an ideal pattern for Joule heating, far from edge scattering. High‐field electrical measurements and self‐heating modeling demonstrate that the WTe2 nanobelts have a breakdown current density approaching ≈100 MA cm−2, remarkably higher than those of conventional metals and other transition‐metal chalcogenides, and sustain the highest electrical power per channel length (≈16.4 W cm−1) among the interconnect candidates. The results suggest superior robustness of WTe2 against high‐bias sweep and its possible applicability in future nanoelectronics.
The edge-to-edge connected metal-semiconductor junction (MSJ) for two-dimensional (2D) transistors has the potential to reduce the contact length while improving the performance of the devices. However, typical 2D materials are thermally and chemically unstable, which impedes the reproducible achievement of high-quality edge contacts. Here we present a scalable synthetic strategy to fabricate low-resistance edge contacts to atomic transistors using a thermally stable 2D metal, PtTe2. The use of PtTe2 as an epitaxial template enables the lateral growth of monolayer MoS2 to achieve a PtTe2-MoS2 MSJ with the thinnest possible, seamless atomic interface. The synthesized lateral heterojunction enables the reduced dimensions of Schottky barriers and enhanced carrier injection compared to counterparts composed of a vertical 3D metal contact. Furthermore, facile position-selected growth of PtTe2-MoS2 MSJ arrays using conventional lithography can facilitate the design of device layouts with high processability, while providing low contact resistivity and ultrashort transfer length on wafer scales.
The practical application of 2D MXenes for electronic and energy applications has been hindered by the severe variation in the quality of the MXene products depending on the parent MAX...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.