This study shows that conductivity mapping of breast cancers is feasible using a noninvasive in vivo MREPT technique combined with a coil combination process. The method may provide a tool in the MR diagnosis of breast cancer.
Processing-in-memory (PIM) chips that integrate processor logic into memory devices offer a new opportunity for bridging the growing gap between processor and memory speeds, especially for applications with high memory-bandwidth requirements. The Data-IntensiVe Architecture (DIVA) system combines PIM memories with one or more external host processors and a PIM-to-PIM interconnect. DIVA increases memory bandwidth through two mechanisms: (1) performing selected computation in memory, reducing the quantity of data transferred across the processor-memory interface; and (2) providing communication mechanisms called parcels for moving both data and computation throughout memory, further bypassing the processor-memory bus. DIVA uniquely supports acceleration of important irregular applications, including sparse-matrix and pointer-based computations. In this paper, we focus on several aspects of DIVA designed to effectively support such computations at very high performance levels: (1) the memory model and parcel definitions; (2) the PIM-to-PIM interconnect; and, (3) requirements for the processor-to-memory interface. We demonstrate the potential of PIMbased architectures in accelerating the performance of three irregular computations, sparse conjugate gradient, a natural-join database operation and an object-oriented database query.
The DIVA (Data IntensiVe Architecture) system incorporates a collection of Processing-In-Memory (PIM) chips as smart-memory co-processors to a conventional microprocessor. We have recently fabricated prototype DIVA PIMs. These chips represent the first smart-memory devices designed to support virtual addressing and capable of executing multiple threads of control. In this paper, we describe the prototype PIM architecture. We emphasize three unique features of DIVA PIMs, namely, the memory interface to the host processor, the 256-bit wide datapaths for exploiting on-chip bandwidth, and the address translation unit. We present detailed simulation results on eight benchmark applications. When just a single PIM chip is used, we achieve an average speedup of 3.3X over host-only execution, due to lower memory stall times and increased fine-grain parallelism. These 1-PIM results suggest that a PIM-based architecture with many such chips yields significantly higher performance than a multiprocessor of a similar scale and at a much reduced hardware cost.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.