Reduction of hydroxylamine to ammonium by phytoglobin, a plant hexacoordinate hemoglobin, is much faster than that of other hexacoordinate hemoglobins or pentacoordinate hemoglobins such as myoglobin, leghemoglobin, and red blood cell hemoglobin. The reason for differences in reactivity is not known but could be intermolecular electron transfer between protein molecules in support of the required two-electron reduction, hydroxylamine binding, or active site architecture favoring the reaction. Experiments were conducted with phytoglobins from rice, tomato, and soybean along with human neuroglobin and soybean leghemoglobin that reveal hydroxylamine binding as the rate-limiting step. For hexacoordinate hemoglobins, binding is limited by the dissociation rate constant for the distal histidine, while leghemoglobin is limited by an intrinsically low affinity for hydroxylamine. When the distal histidine is removed from rice phytoglobin, a hydroxylamine-bound intermediate is formed and the reaction rate is diminished, indicating that the distal histidine imidazole side chain is critical for the reaction, albeit not for electron transfer but rather for direct interaction with the substrate. Together, these results demonstrate that phytoglobins are superior at hydroxylamine reduction because they have distal histidine coordination affinity constants near 1, and facile rate constants for binding and dissociation of the histidine side chain. Hexacoordinate hemoglobins such as neuroglobin are limited by tighter histidine coordination that blocks hydroxylamine binding, and pentacoordinate hemoglobins have intrinsically lower hydroxylamine affinities.
Phytoglobins are plant hexacoordinate hemoglobins with reversible coordination of a histidine side chain to the ligand binding site of the heme iron. They mediate electron transfer reactions such as nitric oxide scavenging and are particularly efficient at reducing nitrite and hydroxylamine. Previous work with phytoglobins has focused only on single turnovers of these reactions and has not revealed whether structural features, such as histidine hexacoordination, play a prominent role in the complete catalytic cycle. This work characterizes steady-state phytoglobin catalysis of reduction of hydroxylamine to ammonium using two different chemical reductants. K and k values were measured for rice phytoglobin, horse myoglobin, human neuroglobin, and a rice phytoglobin mutant protein in which the hexacoordinating histidine has been replaced with leucine (Phyt:H73L). The results demonstrate that phytoglobin catalysis driven by benzyl viologen is limited only by the dissociation rate constant for the distal histidine. This is consistent with the rate limit in single-turnover experiments and demonstrates that the kinetics of hydroxylamine binding, and not phytoglobin reduction, ultimately governs the reaction. Catalysis by the other proteins that either lack or have tighter hexacoordination is much slower, suggesting that facile reversibility of the bond between the distal histidine and the heme iron is needed to allow both substrate binding and heme iron reduction. On the other hand, catalysis driven by dithionite is limited by SO concentrations and is similar for all of these proteins, suggesting that dithionite is not a good reducing agent for evaluation of the catalytic properties of hemoglobins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.