Summary
The proposed 10T SRAM cell design is implemented for different CNTFET parameters like pitch, number of tubes, chirality, dielectric materials, and flatband voltage to analyze its effect on various performance parameters. The channel gate width, average read, and write power increase, but leakage power, read delay, and write delay decrease with the increase in pitch of CNTFET, whereas all these parameters are directly proportional to the number of tubes. Chirality alteration shows inverse effect on threshold voltage, read delay, and write delay although other parameters are directly related to it. The performance parameters are evaluated for various dielectric materials, and HfO2 gives the best results for low power and high‐speed applications. Analysis of flatband voltage on proposed 10T SRAM is performed by keeping flatband voltage constant for n‐CNTFET and varied for p‐CNTFET. Extensive analysis has been done to scrutinize the sharing of powers and delay of 10T SRAM because of variations in supply voltage and temperature. The supply voltage sweeps for a range between 0.6 and 1.2 V, and range of temperature variation is considered from −27 to 127°C. The stability of the proposed SRAM cell is calculated using N‐curve method to find voltage and current information. The CNTFET based 10T SRAM cell depicts that it persists supply voltage and temperature variation significantly superior than CMOS.
Summary
This paper presents a highly stable, low leakage inexact full adder (FA) which is based on top gate carbon nanotube field effect transistors (TG‐CNTFET) for motion detector applications. Inexact arithmetic circuits are highly accepted in low power multimedia applications. Circuit level metrics, ie, average power, propagation delay, power‐delay product (PDP), and leakage power dissipation as well as application level metric such as peak signal to noise ratio (PSNR) are considered to compare the performance of proposed inexact FA. All the simulations are performed using HSPICE tool with Stanford 32‐nm TG‐CNTFET model. The operating frequency used for simulation is 1‐Ghz with 0.9‐V supply voltage. Proposed inexact FA successfully achieve manifold reduction in leakage power as well as consume 89.2% lesser energy as compared with latest existing inexact FA while having other parameters in acceptable range. Simulations using MATLAB show satisfactory image quality and PSNR value for motion detection applications. The effect of variations in voltage and temperature on leakage power is also presented which confirms stability of the proposed circuit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.