This study reviews recent developments, challenges, and the prospect of electronic waste (e-waste). Various aspects of e-waste, including collection, pre-treatment, and recycling, are discussed briefly. It is found that Europe is the leading collector of e-waste, followed by Asia, America, Oceania, and Africa. The monetary worth of e-waste raw materials is estimated to be $57.0 billion. However, only $10.0 billion worth of e-waste is recycled and recovered sustainably, offsetting 15.0 million tonnes (Mt) of CO2. The major challenges of e-waste treatment include collection, sorting and inhomogeneity of waste, low energy density, prevention of further waste, emission, and cost-effective recycling. Only 78 countries in the world now have e-waste related legislation. Such legislation is not effectively implemented in most regions. Developing countries like south-eastern Asia and Northern Africa have limited or no e-waste legislation. Therefore, country-specific standards and legislation, public awareness, effective implementation, and government incentives for developing cost-effective technologies are sought to manage e-waste, which will play an important role in the circular economy.
Abstract:The evaporator is an important component in the Organic Rankine Cycle (ORC)-based Waste Heat Recovery (WHR) system since the effective heat transfer of this device reflects on the efficiency of the system. When the WHR system operates under supercritical conditions, the heat transfer mechanism in the evaporator is unpredictable due to the change of thermo-physical properties of the fluid with temperature. Although the conventional finite volume model can successfully capture those changes in the evaporator of the WHR process, the computation time for this method is high. To reduce the computation time, this paper develops a new fuzzy based evaporator model and compares its performance with the finite volume method. The results show that the fuzzy technique can be applied to predict the output of the supercritical evaporator in the waste heat recovery system and can significantly reduce the required computation time. The proposed model, therefore, has the potential to be used in real time control applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.