Tissue resident memory T cells (TRM) maintain immunity in diverse sites as determined in mouse models, while their establishment and role in human tissues has been difficult to assess. Here, we investigated human lung TRM generation, maintenance and function in airway samples obtained longitudinally from HLA-disparate lung transplant recipients, where donor and recipient T cells could be localized and tracked over time. Donor T cells persist specifically in the lungs (and not blood) of transplant recipients and express high levels of TRM signature markers including CD69, CD103, and CD49a, while lung-infiltrating recipient T cells gradually acquire TRM phenotypes over months in vivo. Single cell transcriptome profiling of airway T cells reveals that donor T cells comprise two TRM-like subsets with varying levels of expression of TRM-associated genes while recipient T cells comprised non-TRM and similar TRM-like subpopulations, suggesting de novo TRM generation. Transplant recipients exhibiting higher frequencies of persisting donor TRM experienced fewer adverse clinical events such as primary graft dysfunction and acute cellular rejection compared to recipients with low donor TRM persistence, suggesting that monitoring TRM dynamics could be clinically informative. Together, our results provide novel spatial and temporal insights into how human TRM develop, function, persist, and impact tissue integrity within the complexities of lung transplantation.
SUMMARY
Regulatory T cell (Treg cell) responses and apoptotic cell clearance (efferocytosis) represent critical arms of the inflammation resolution response. We sought to determine whether these processes may be linked through Treg cell-mediated enhancement of efferocytosis. In zymosan-induced peritonitis and LPS-induced lung injury, Treg cells increased early in resolution, and Treg cell depletion decreased efferocytosis. In advanced atherosclerosis, where defective efferocytosis drives disease progression, Treg cell expansion improved efferocytosis. Mechanistic studies revealed the following sequence: (i) Treg cells secreted interleukin (IL)-13, which stimulated IL-10 production in macrophages; (ii) autocrine signaling by IL-10 induced Vav1 in macrophages; and (iii) Vav1 activated Rac1 to promote apoptotic cell engulfment. In summary, Treg cells promote macrophage efferocytosis during inflammation resolution via a transcellular signaling pathway that enhances apoptotic cell internalization. These findings suggest an expanded role of Treg cells in inflammation resolution and provide a mechanistic basis for Treg cell-enhancement strategies for non-resolving inflammatory diseases.
Multisystem inflammatory syndrome in children (MIS-C) presents with fever, inflammation and pathology of multiple organs in individuals under 21 years of age in the weeks following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Although an autoimmune pathogenesis has been proposed, the genes, pathways and cell types causal to this new disease remain unknown. Here we perform RNA sequencing of blood from patients with MIS-C and controls to find disease-associated genes clustered in a co-expression module annotated to CD56dimCD57+ natural killer (NK) cells and exhausted CD8+ T cells. A similar transcriptome signature is replicated in an independent cohort of Kawasaki disease (KD), the related condition after which MIS-C was initially named. Probing a probabilistic causal network previously constructed from over 1,000 blood transcriptomes both validates the structure of this module and reveals nine key regulators, including TBX21, a central coordinator of exhausted CD8+ T cell differentiation. Together, this unbiased, transcriptome-wide survey implicates downregulation of NK cells and cytotoxic T cell exhaustion in the pathogenesis of MIS-C.
In 2010, 1770 lung transplant procedures were performed in the USA, yet 2469 new candidates were added to the waiting list the same year. The shortage of suitable donor lungs requires that transplant professionals select patients for lung transplantation only if they are likely to sustain a survival benefit from the procedure. However, 20% of lung transplant recipients die within the first year of transplantation, suggesting that we are failing to identify those at high risk for severe early complications. In this perspective, we review the current guidelines for the selection of lung transplant candidates, which are based largely on expert opinion and small case series. We also propose the study of new extrapulmonary factors, such as frailty and sarcopenia, that might help improve the prediction of complications and early death after lung transplantation, leading to an improved candidate selection process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.