This study linked growth inhibition of soil bacteria and protists to the chemical activity (a) of polycyclic aromatic hydrocarbons (PAHs) and compared the sensitivities of bacteria and protists. Passive dosing from pre-loaded silicone provided well-defined and constant a of PAHs in independent tests. Single-species growth inhibition with two bacterial (Pseuodomonas fluorescens DR54 and Sinorhizobium meliloti) and two protist (Cercomonas longicauda and Acanthamoeba castellanii) strains at maximum a (amax) of nine and four PAHs, respectively, showed no inhibition of PAHs with amax below 0.1 (pyrene and anthracene), while growth inhibition was observed for PAHs with amax above 0.1 (e.g. fluorene, fluoranthene and naphthalene). The bacteria were less sensitive than the protists. Soil bacterial community-level growth inhibition by naphthalene was in good agreement with single-species data, but also indicated the presence of sensitive bacteria that were inhibited by a below 0.05 and increasing pre-exposure time giving higher inhibition. The a of 50% inhibition (Ea50) was 0.434 and 0.329 for 0.5 and 4 h pre-exposure time, respectively. Invertebrates tended to be more sensitive than single-celled organisms tested here. This suggests that PAH exposure leads to differential toxicity in soil biota, which may affect soil food web structure and cycling of organic matter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.