Cyclodextrin-based nanosponges (CD-NS) are a novel class of polymers cross-linked with a three-dimensional network and can be obtained from cyclodextrins (CD) and pyromellitic dianhydride. Their properties, such as their ability to form an inclusion complex with drugs, can be used in biomedical science, as nanosponges influence stability, toxicity, selectivity, and controlled release. Most pharmaceutical research use CD-NS for the delivery of drugs in cancer treatment. Application of molecular targeting techniques result in increased selectivity of CD-NS; for example, the addition of disulfide bridges to the polymer structure makes the nanosponge sensitive to the presence of glutathione, as it can reduce such disulfide bonds to thiol moieties. Other delivery applications include dermal transport of pain killers or photosensitizers and delivery of oxygen to heart cells. This gives rise to the opportunity to transition to medical scaffolds, but more, in modern times, to create an ultrasensitive biosensor, which employs the techniques of surface-modified nanoparticles and molecularly imprinted polymers (MIP). The following review focuses on the biomedical research of cyclodextrin polymers cross-linked via dianhydrides of carboxylic acids.
Cyclodextrins (CDs) are a family of macrocyclic oligosaccharides mostly composed of six, seven, or eight α-D-glucopyranose units with α-1,4-glycosidic bonds to form toroidal structures. The CDs possess a hydrophilic exterior and hydrophobic interior with the ability to form an inclusion complex, especially with hydrophobic molecules. However, most existing studies are about conjugation CDs with peptide/protein focusing on the formation of new systems. The CD-peptide/protein can possess new abilities; particularly, the cavity can be applied in modulation properties of more complexed proteins. Most studies are focused on drug delivery, such as targeted delivery in cell-penetrating peptides or co-delivery. The co-delivery is based mostly on polylysine systems; on the other hand, the CD-peptide allows us to understand biomolecular mechanisms such as fibryllation or stem cell behaviour. Moreover, the CD-proteins are more complexed systems with a focus on targeted therapy; these conjugates might be controllable with various properties due to changes in their stability. Finally, the studies of CD-peptide/protein are promising in biomedical application and provide new possibilities for the conjugation of simple molecules to biomolecules.
New water soluble amino β-cyclodextrin-based polymer was synthesized by reaction between amino cyclodextrin derivatives and pyromellitic anhydride. This experiment presents amino derivatives, which were synthesized by attaching amino groups to β-cyclodextrins (β-CDs) used mono-6-azido-6-deoxy-β-cyclodextrin (β-CD-N3) and triphenylphosphine (Ph3P) in anhydrous N,N-dimethylformamide (DMF). An amino blocking reaction was conducted. The obtained polymer was purified by ultrafiltration. In addition, an attempt was made to create nanospheres by encapsulating the polymer with chitosan (CT) in an acidic condition. For the first time, nanospheres were obtained in the reaction between an amino β-cyclodextrin polymer and chitosan. Scanning electron microscopy (SEM). 1H NMR and ESI-MS methods for confirmation of reaction product and for structural characterization were employed. The differential scanning calorimetry (DSC) studies of polymers were also carried out.
Polymer membranes with immobilized ligands are encouraging alternatives for the removal of toxic metal ions from aquatic waste streams, including industrial wastewater, in view of their high selectivity, stability, removal efficacy and low energy demands. In this study, polymer inclusion membranes (PIMs) based on cellulose triacetate, with a calix[4]pyrrole derivative as an ion carrier, were tested for their capability to dispose mercury (Hg(II)) ions from industrial wastewater. The impacts were assessed relative to carrier content, the quantity of plasticizer in the membrane, the hydrocholoric acid concentration in the source phase, and the character of the receiving phase on the performance of Hg(II) elimination. Optimally designed PIMs could be an interesting option for the industrial wastewater treatment due to the high removal efficiency of Hg(II) and great repeatability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.