Glioblastoma belongs to the most aggressive type of cancer with a low survival rate that is characterized by the ability in forming a highly immunosuppressive tumor microenvironment. Intercellular communication are created via exosomes in the tumor microenvironment through the transport of various biomolecules. They are primarily involved in tumor growth, differentiation, metastasis, and chemotherapy or radiation resistance. Recently several studies have highlighted the critical role of tumor-derived exosomes against immune cells. According to the structural and functional properties, exosomes could be essential instruments to gain a better molecular mechanism for tumor understanding. Additionally, they are qualified as diagnostic/prognostic markers and therapeutic tools for specific targeting of invasive tumor cells such as glioblastomas. Due to the strong dependency of exosome features on the original cells and their developmental status, it is essential to review their critical modulating molecules, clinical relevance to glioma, and associated signaling pathways. This review is a non-clinical study, as the possible role of exosomes and exosomal microRNAs in glioma cancer are reported. In addition, their content to overcome cancer resistance and their potential as diagnostic biomarkers are analyzed.
Metastatic lesions leading causes of the majority of deaths in patients with the breast cancer. The present study aimed to provide a comprehensive analysis of the differentially expressed genes (DEGs) in the brain (MDA-MB-231 BrM2) and lung (MDA-MB-231 LM2) metastatic cell lines obtained from breast cancer patients compared with those who have primary breast cancer. We identified 981 and 662 DEGs for brain and lung metastasis, respectively. Protein-protein interaction (PPI) analysis revealed seven shared (PLCB1, FPR1, FPR2, CX3CL1, GABBR2, GPR37, and CXCR4) hub genes between brain and lung metastasis in breast cancer. Moreover, GNG2 and CXCL8, C3, and PTPN6 in the brain and SAA1 and CCR5 in lung metastasis were found as unique hub genes. Besides, five co-regulation of clusters via seven important co-expression genes (COL1A2, LUM, SPARC, THBS2, IL1B, CXCL8, THY1) were identified in the brain PPI network. Clusters screening followed by biological process (BP) function and pathway enrichment analysis for both metastatic cell lines showed that complement receptor signalling, acetylcholine receptor signalling, and gastric acid secretion pathways were common between these metastases, whereas other pathways were site-specific. According to our findings, there are a set of genes and functional pathways that mark and mediate breast cancer metastasis to the brain and lungs, which may enable us understand the molecular basis of breast cancer development in a deeper levele to the brain and lungs, which may help us gain a more complete understanding of the molecular underpinnings of breast cancer development.
Exosomes, known as a type of extracellular vesicles (EVs), are lipid particles comprising heterogeneous contents such as nucleic acids, proteins, and DNA. These bi-layered particles are naturally released into the extracellular periphery by a variety of cells such as neoplastic cells. Given that exosomes have unique properties, they can be used as vectors and carriers of biological and medicinal particles like drugs for delivering to the desired areas. The proteins and RNAs being encompassed by the circulating exosomes in B-cell malignancies are deemed as the promising sources for diagnostic and prognostic biomarkers, as well as therapeutic agents. Exosomes can also provide a “snapshot” view of the tumor and metastatic landscape at any particular time. Further, clinical research has shown that exosomes are produced by immune cells such as dendritic cells can stimulate the immune system, so these exosomes can be used in antitumor vaccines. Despite the great potential of exosomes in the fields of diagnostic and treatment, further studies are in need for these purposes to reach a convergence notion. This review highlights the applications of exosomes in multiple immune-related diseases, including chronic lymphocytic leukemia, multiple sclerosis, and arthritis rheumatoid, as well as explaining sundry aspects of exosome therapy and the function of exosomes in diagnosing diseases.
The attachment of SARA-CoV-2 happens between ACE2 and the receptor binding domain (RBD) on the spike protein. Mutations in this domain can affect the binding affinity of the spike protein for ACE2. S477N, one of the most common mutations reported in the recent variants, is located in the RBD.Today's computational approaches in biology, especially during the SARS-CoV-2 pandemic, assist researchers in predicting a protein's behavior in contact with other proteins in more detail. In this study, we investigated the interactions of the S477N-hACE2 in silico to find the impact of this mutation on its binding affinity for ACE2 and immunity responses using dynamics simulation, protein-protein docking, and immunoinformatics methods. Our computational analysis revealed an increased binding affinity of N477 for ACE2. Four new hydrogen and hydrophobic bonds in the mutant RBD-ACE2 were formed (with S19 and Q24 of ACE2), which do not exist in the wild type. Also, the protein spike structure in this mutation was associated with an increase in stabilization and a decrease in its fluctuations at the atomic level. N477 mutation can be considered as the cause of increased escape from the immune system through MHC-II.
After the announcement of a new coronavirus in China in December 2019, which was then called SARS-CoV-2, this virus changed to a global concern and it was then declared as a pandemic by WHO. Human leukocyte antigen (HLA) alleles, which are one of the most polymorphic genes, play a pivotal role in both resistance and vulnerability of the body against viruses and other infections as well as chronic diseases. The association between HLA alleles and preexisting medical conditions such as cardiovascular diseases and diabetes mellitus is reported in various studies. In this review, we focused on the bioinformatic HLA studies to summarize the HLA alleles which responded to SARS-CoV-2 peptides and have been used to design vaccines. We also reviewed HLA alleles that are associated with comorbidities and might be related to the high mortality rate among COVID-19 patients. Since both genes and patients’ medical conditions play a key role in both severity of the disease and the mortality rate in COVID-19 patients, a better understanding of the connection between HLA alleles and SARS-CoV-2 can provide a wider perspective on the behavior of the virus. Such understanding can help scientists, especially in terms of protecting healthcare workers and designing effective vaccines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.