in silico modeling, using Psipred and ExPASy servers was employed to determine the structural elements of Bcr-Abl oncoprotein (p210BCR-ABL) isoforms, b2a2 and b3a2, expressed in Chronic Myelogenous Leukemia (CML). Both these proteins are tyrosine kinases having masses of 210-kDa and differing only by 25 amino acids coded by the b3 exonand an amino acidsubstitution (Glu903Asp). The secondary structure elements of the two proteins show differences in five α-helices and nine β-strands which relates to differences in the SH3, SH2, SH1 and DNA-binding domains. These differences can result in different roles played by the two isoforms in mediating signal transduction during the course of CML.
The structure of human Methylenetetrahydrofolate Reductase (MTHFR) is not known either by NMR or by X-ray methods. Phosphorylation seems to play an important role in the functioning of this flavoprotein. MTHFR catalyzes an irreversible reaction in homocysteine metabolism. Phosphorylation decreases the activity of MTHFR by enhancing the sensitivity of the enzyme to SAdenosylmethione. Two common polymorphisms in MTHFR, Ala222Val and Glu429Ala, can result in a number of vascular diseases. Effects of the Glu429Ala polymorphism on the structure of human MTHFR remain undetermined due to limited structural information. Hence, structural models of the MTHFR mutants were constructed using I-TASSER and assessed by PROCHECK, DFIRE and Verify3D tools. A mechanism is further suggested for the decreased activity of the Ala222Val and Glu429Ala mutants due to a decrease in number of serine phosphorylation sites using information gleaned from the molecular models. This provides insights for the understanding of structure-function relationship for MTHFR.
Despite advances in molecular medicine, genomics, proteomics and translational research, prostate cancer remains the second most common cause of cancer-related mortality for men in the Western world. Clearly, early detection, targeted treatment and post-treatment monitoring are vital tools to combat this disease. Tumor markers can be useful for diagnosis and early detection of cancer, assessment of prognosis, prediction of therapeutic effect and treatment monitoring. Such tumor markers include prostate-specific antigen (prostate), cancer antigen (CA)15.3 (breast), CA125 (ovarian), CA19.9 (gastrointestinal) and serum alpha-fetoprotein (testicular cancer). However, all of these biomarkers lack sensitivity and specificity and, therefore, there is a large drive towards proteomic biomarker discovery. Current research efforts are directed towards discovering biosignatures from biological samples using novel proteomic technologies that provide high-throughput, in-depth analysis and quantification of the proteome. Several of these studies have revealed promising biomarkers for use in diagnosis, assessment of prognosis, and targeting treatment of prostate cancer. This review focuses on prostate cancer proteomic biomarker discovery and its future potential.
Abstract-2-µ-Globulin fragment (A2-f) functions as a fatty acid binding protein in kidneys of male rats. It has 100% sequence homology with amino acids 10-160 of 2-µ-Globulin (A2), an 18.6-kDa protein that is synthesized in male rat liver and is present in urine. A2-f is produced from A2 by the removal of 3 residues from the N-terminus and 9 amino acids residues from the C-terminus. This project aimed to isolate and purify A2-f (to >90% purity) for NMR analysis since the solution state structure of A2-f is still unknown. The purification failed due to formation of multimers in vitro but it did reveal heterogeneity of this protein as isolated from tissue.Index Terms-2--Globulin fragment (A2-f), 2--Globulin (A2), kidney fatty acid binding protein, Lipocalins, protein aggregation, male rat urinary proteins.
The cure for Alzheimer's disease (AD) is still unknown. According to Cholinergic hypothesis, Alzheimer's disease is caused by the reduced synthesis of the neurotransmitter, Acetylcholine. Regional cerebral blood flow can be increased in patients with Alzheimer's disease by Acetylcholinesterase (AChE) inhibitors. In this regard, Tetraphenylporphinesulfonate (TPPS), 5,10,15,20- Tetrakis (4-sulfonatophenyl) porphyrinato Iron(III) Chloride (FeTPPS) and 5,10,15,20-Tetrakis (4-sulfonatophenyl) porphyrinatoIron(III) nitrosyl Chloride (FeNOTPPS) were investigated as candidate compounds for inhibition of Acteylcholinesterase of Drosophila melanogaster (DmAChE) by use of Molecular Docking. The results show that FeNOTPPS forms the most stable complex with DmAChE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.