The aim of the present research was to study the effects of olive leaf addition (0 and 3%) on the major antioxidants and the antioxidant activity of Neb Jmel and Oueslati olive oils. Olives and leaves of the two Tunisian varieties were harvested during the 2016/2017 crop season. Both leaves and oils were characterised for their concentrations in phenolics, tocopherols and antioxidant power. Other parameters such as free acidity, peroxide value, chlorophyll and carotenoid concentrations were also taken into consideration. Compared to Oueslati, the Neb Jmel oil showed a lower free acidity (50%) and peroxide value (5.6-fold), and higher chlorophyll (1.6-fold), total phenolics (1.3-fold), flavonoid (3-fold) and oleuropein derivative (1.5-fold) concentrations, in addition to an increased antioxidant activity (1.6-fold). Leaf addition promoted a significant increment in total chlorophyll, α-tocopherol and phenolics in both varieties, above all in Oueslati oil, due to a higher abundance of bioactive constituents in the corresponding leaves. In particular, chlorophyll and carotenoid concentrations reached values twice higher than in Neb Jmel leaves, and flavonoids and oleouperin derivatives were three-fold higher. This prevented the oxidation and the formation of peroxides, reducing the peroxide value of the fortified oil to the half. The results provide evidence on the performance of the Tunisian Neb Jmel and Oueslati varieties, showing that their oils present a chemical profile corresponding to the extra virgin olive oil category and that, after leaf addition, their nutritional value was improved.
c Antifungal resistance of Candida species is a clinical problem in the management of diseases caused by these pathogens. In this study we identified from a collection of 423 clinical samples taken from Tunisian hospitals two clinical Candida species (Candida albicans JEY355 and Candida tropicalis JEY162) with decreased susceptibility to azoles and polyenes. For JEY355, the fluconazole (FLC) MIC was 8 g/ml. Azole resistance in C. albicans JEY355 was mainly caused by overexpression of a multidrug efflux pump of the major facilitator superfamily, Mdr1. The regulator of Mdr1, MRR1, contained a yet-unknown gain-of-function mutation (V877F) causing MDR1 overexpression. The C. tropicalis JEY162 isolate demonstrated cross-resistance between FLC (MIC > 128 g/ml), voriconazole (MIC > 16 g/ml), and amphotericin B (MIC > 32 g/ml). Sterol analysis using gas chromatography-mass spectrometry revealed that ergosterol was undetectable in JEY162 and that it accumulated 14␣-methyl fecosterol, thus indicating a perturbation in the function of at least two main ergosterol biosynthesis proteins (Erg11 and Erg3). Sequence analyses of C. tropicalis ERG11 (CtERG11) and CtERG3 from JEY162 revealed a deletion of 132 nucleotides and a single amino acid substitution (S258F), respectively. These two alleles were demonstrated to be nonfunctional and thus are consistent with previous studies showing that ERG11 mutants can only survive in combination with other ERG3 mutations. CtERG3 and CtERG11 wild-type alleles were replaced by the defective genes in a wild-type C. tropicalis strain, resulting in a drug resistance phenotype identical to that of JEY162. This genetic evidence demonstrated that CtERG3 and CtERG11 mutations participated in drug resistance. During reconstitution of the drug resistance in C. tropicalis, a strain was obtained harboring only defective Cterg11 allele and containing as a major sterol the toxic metabolite 14␣-methyl-ergosta-8,24(28)-dien-3␣,6-diol, suggesting that ERG3 was still functional. This strain therefore challenged the current belief that ERG11 mutations cannot be viable unless accompanied by compensatory mutations. In conclusion, this study, in addition to identifying a novel MRR1 mutation in C. albicans, constitutes the first report on a clinical C. tropicalis with defective activity of sterol 14␣-demethylase and sterol ⌬ 5,6 -desaturase leading to azole-polyene cross-resistance.
In this study, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was used as a rapid method to identify yeasts isolated from patients in Tunisian hospitals. When identification could not be exstablished with this procedure, sequencing of the internal transcribed spacer with 5.8S ribosomal DNA (rDNA) (ITS1-5.8S-ITS2) and D1/D2 domain of large-subunit (LSU rDNA) were employed as a molecular approach for species differentiation. Candida albicans was the dominant species (43.37% of all cases), followed by C. glabrata (16.55%), C. parapsilosis (13.23%), C. tropicalis (11.34%), C. dubliniensis (4.96%), and other species more rarely encountered in human diseases such as C. krusei, C. metapsilosis, C. lusitaniae, C. kefyr, C. palmioleophila, C. guilliermondii, C. intermedia, C. orthopsilosis, and C. utilis. In addition, other yeast species were obtained including Saccharomyces cerevisiae, Debaryomyces hansenii (anamorph known as C. famata), Hanseniaspora opuntiae, Kodamaea ohmeri, Pichia caribbica (anamorph known as C. fermentati), Trichosporon spp. and finally a novel yeast species, C. tunisiensis. The in vitro antifungal activities of fluconazole and voriconazole were determined by the agar disk diffusion test and Etest, while the susceptibility to additional antifungal agents was determined with the Sensititre YeastOne system. Our results showed low incidence of azole resistance in C. albicans (0.54%), C. tropicalis (2.08%) and C. glabrata (4.28%). In addition, caspofungin was active against most isolates of the collection with the exception of two K. ohmeri isolates. This is the first report to describe caspofungin resistant isolates of this yeast.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.