coccidiosis, caused by Eimeria spp. presents a self-limiting intestinal infection of poultry. intestinal replication of the parasite causes severe morphological alterations to the host gastrointestinal tract, marked, among others, by the disruption of the intestinal barrier. We have previously reported a significant reduction in merozoite replication and oocyst shedding in E. tenella in vitro and in vivo. the objective of this study was to investigate the pathogenesis of E. maxima infection in broiler chickens under heat stress (HS) and mRNA expression of host cytokines that might affect the curtailed development of the parasite. We herein demonstrate that there is a significant detrimental effect of HS on the pathogenesis of E. maxima infection in broilers. there was a restricted replication of the parasite in HS chickens evidenced by significantly reduced oocyst shedding and disruption of the intestinal blood barrier. Gene expression of parasite genes demonstrated curtailed sexual reproduction of E. maxima in HS chickens. there was downregulation of Eimeria spp. genes related to gamete fusion, oocyst shedding, mitosis and spermiogenesis. Host gene expression indicates alterations in the cytokine expression that could be related to reduced parasite development in vivo. Eimeria spp. is an apicomplexan parasite, the causative agent of coccidiosis, a disease of high economic impact in poultry production worldwide. The parasite's life-cycle is comprised of several cycles of endogenous asexual replication followed by sexual development that results in the formation of the oocysts, later excreted in the feces 1. Eimeria (E.) maxima is one of the seven recognized species of coccidia that infect the chicken. The disease is marked by reduced growth, apathy, diarrhea and in severe cases, mortality. Clinical signs often include emaciation, pallor, roughening of feathers and anorexia. Abundance of yellow-orange mucus and fluid in the distal portion of the jejunum and proximal portion of the ileum, edema, thickening and disruption of the mucosa and sometimes presence of blood in the intestinal lumen are observed at necropsy 2. Heat stress (HS) is one of the major environmental problems of poultry production in tropical and subtropical regions. Stress is a predisposing factor of immunosuppression in broilers, offering a good opportunity to normal commensals to induce infection and disease 3-5. Heat stress has been reported to enhance pathogen attachment, colonization, shedding, reduce intestinal crypt depth and impact food safety risks 5-8. The increase in pathogen colonization in heat stressed chickens is believed to be related to the disturbances in microbiota composition, thereby leading to a loss of protection against pathogenic microorganisms 8. Contrary to the detrimental effects of HS in the outcome of infection with most poultry pathogens, we have previously demonstrated that the increase in 2 °C in the temperature of incubation of E. tenella significantly reduces asexual replication in vitro and that HS significantly...
Eimeria (E.) maxima is one of the most pathogenic Eimeria spp persistently invading the middle jejunum and ileum, damaging the intestinal mucosa of chickens. Heat stress (HS) is a common stressor and equally contributes to inflammation and oxidative stress. We investigated the effect of E. maxima infection and HS on ileal digestibility, mRNA expression of nutrient transporters, and ileal tissue morphology in broiler chickens. There were four treatment groups: thermoneutral control (TNc), thermoneutral infected (TNi), heat stress control (HSc), and heat stress infected (HSi), 6 replicates each of 10 birds per treatment. Chickens were fed a diet containing 0.2% TiO2. At 6-day-post infection, ileal content and tissue were collected to quantify ileal digestibility of crude protein and fat, mRNA levels of nutrient transporters and histopathology. Growth and feed intake were reduced in all treatment groups, compared with the TNc. Contrary to expectation, the combination of two major stressors (E. maxima and HS) in the TNi group exhibited almost normal digestibility while only the TNi birds expressed severe digestibility depression, compared with the TNc group. The TNi group showed the lowest mRNA expression of the transporters: SGLT1, GLUT2-5-8-10-12, FABP1-2-6, and PEPT1 compared with the other treatment groups. The expression of the absorptive enterocytes’ gene markers (ACSL5, IAP, and SGLT1) supported by the ileal tissue morphology indicated that the TNi group had the highest enterocytic destruction. The expression of oxidative genes (iNOS and CYBB) dramatically increased only in the TNi group compared with the other treatment groups. Our results showed that exposing broiler chickens to HS can mitigate the disruptive effect of E. maxima on the ileal digestibility and absorption by limiting the parasite-induced tissue injury and suppressing the enterocytic inducible oxidative damage.
Eimeria (E.) maxima invades the midgut of chickens and destroys the intestinal mucosa, impacting nutrient digestibility and absorption. Heat stress (HS) commonly affects the broiler chicken and contributes to inflammation and oxidative stress. We examined the independent and combined effects of HS and E. maxima infection on apparent amino acid ileal digestibility (AID) and mRNA expression of amino acid transporters in broiler chickens (Ross 708). There were four treatment groups: thermoneutral-control (TNc) and infected (TNi), heat-stress control (HSc) and infected (HSi), six replicates of 10 birds/treatment. Ileal content and tissue were sampled at 6 d post infection to determine AID and transporters expression. Surprisingly, the HSi chickens exposed to two critical stressors exhibited normal AID. Only the TNi group displayed reduction in AID. Using TNc as control, the HSc group showed upregulated CAT1, LAT4, TAT1, SNAT1, and SNAT7. The HSi group showed upregulated CAT1 and LAT1, and downregulated b0,+AT, rBAT, SNAT1, and SNAT2. The TNi group showed upregulated CAT1, LAT1, and SNAT1 and downregulated B0AT1, b0,+AT, rBAT, LAT4, and TAT1. The expression of all enterocytic-apical and about half of the basolateral transporters was higher in the HSi group than in the TNi group, indicating that HS can putatively alleviate the E. maxima adverse effect on ileal digestion and absorption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.