The evaluation of engineered nanomaterial safety has been hindered by conflicting reports demonstrating differential degrees of toxicity with the same nanoparticles. The unique properties of these materials increase the likelihood that they will interfere with analytical techniques, which may contribute to this phenomenon. We tested the potential for: 1) nanoparticle intrinsic fluorescence/absorbance, 2) interactions between nanoparticles and assay components, and 3) the effects of adding both nanoparticles and analytes to an assay, to interfere with the accurate assessment of toxicity. Silicon, cadmium selenide, titanium dioxide, and helical rosette nanotubes each affected at least one of the six assays tested, resulting in either substantial over- or under-estimations of toxicity. Simulation of realistic assay conditions revealed that interference could not be predicted solely by interactions between nanoparticles and assay components. Moreover, the nature and degree of interference cannot be predicted solely based on our current understanding of nanomaterial behaviour. A literature survey indicated that ca. 95% of papers from 2010 using biochemical techniques to assess nanotoxicity did not account for potential interference of nanoparticles, and this number had not substantially improved in 2012. We provide guidance on avoiding and/or controlling for such interference to improve the accuracy of nanotoxicity assessments.
Coated nanoparticles (NPs) will end up in the environment due to their proposed use in agricultural applications and may potentially cause toxic effects due to their unique properties. To determine the effects of coated NPs on zebrafish (Danio rerio) development, we tested aqueous poly(acrylic acid) (PAA)-coated metal-oxide NPs including TiO2, ZnO, Fe2O3, and CeO2, as well as the polymer coating alone (nanocapsule). Zebrafish embryos were exposed to NPs over a 72 h period at 1, 10, 50, 100, 200, 400, 800, 1200, 1600, and 2000 mg/L to measure various end points. We also ran free metal controls. Time-dependent changes in physicochemical properties of NPs were characterized using dynamic light scattering. Dissolution experiments over 72 h showed minimal free metals were present in stock suspensions and released from the NPs. Interestingly, nanocapsules (≥ 800 mg/L) cause inhibition of hatch, and we suggest that a low pH environment may explain this effect. This study has also demonstrated that CeO2 NPs and nanocapsules containing Nile red are able to traverse the chorion. Overall, our findings indicate that each NP type is stable and neither the NP or encapsulating PAA coating causes apparent toxicity to developing zebrafish.
Cellulose nanomaterials (CNs) are emerging advanced materials with many unique properties and growing commercial significance. A life-cycle risk assessment and environmental health and safety roadmap identified potential risks from inhalation of powdered CNs in the workplace as a key gap in our understanding of safety and recommended addressing this data gap to advance the safe and successful commercialization of these materials. Here, we (i) summarize the currently available published literature for its contribution to our current understanding of CN inhalation hazard and (ii) evaluate the quality of the studies for risk assessment purposes using published study evaluation tools for nanomaterials to assess the weight of evidence provided. Our analysis found that the quality of the available studies is generally inadequate for risk assessment purposes but is improving over time. There have been some advances in knowledge about the effects of short-term inhalation exposures of CN. The most recent in vivo studies suggest that short-term exposure to CNs results in transient inflammation, similarly to other poorly soluble, low toxicity dusts such as conventional cellulose, but is markedly different from fibers with known toxicity such as certain types of multiwalled carbon nanotubes or asbestos. However, several data gaps remain, and there is still a lack of understanding of the effects from long-term, low-dose exposures that represent realistic workplace conditions, essential for a quantitative assessment of potential health risk. Therefore, taking precautions when handling dry forms of CNs to avoid dust inhalation exposure is warranted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.