Abstract. Observations of the temporal evolution of the geometric properties and migration of wave-formed ripples are analyzed in terms of measured suspended sand profiles and water velocity measurements. Six weeks of bedform observations were taken at the sandy (medium to coarse sized sand) LEO-15 site located on Beach Haven ridge during the late summer of 1995 with an autonomous rotary sidescan sonar. During this period, six tropical storms, several of hurricane strength, passed to the east of the study site. Ripples with wavelengths of up to 100 cm and with 15 cm amplitudes were observed. The predominant ripples were found to be wave orbital scale ripples with ripple wavelengths equal to 3/4 of the wave orbital diameter. Although orbital diameters become larger than 130 cm during the maximum wave event, it is unclear if a transition to nonorbital scaling is occurring. Ripple migration is found to be directed primarily onshore at rates of up to 80 cm/day. Suspended transport due to wave motions, calculated by multiplying acoustic backscatter measurements of suspended sand concentrations by flow velocity measurements, are unable to account for a sufficient amount of sand transport to force ripple migration and are in the opposite direction to ripple migration. Thus it is hypothesized that the onshore ripple migration is due to unobserved bedload transport or near-bottom suspended transport. Bedload model calculations forced with measured wave velocities are able to predict the magnitude and direction of transport consistent with observed ripple migration rates. Sequences of ripple pattern temporal evolution are examined showing mechanisms for ripple directional change in response to changing wave direction, as well as ripple wavelength adjustment and erosion due to changing wave orbital diameter and relative wave-to-current velocities.
The sea floor at the site is gradually sloped at depths less than 90 m, but the deeper area is steppy, having gradual slopes over large areas that are near critical for diurnal internal waves and steep steps between those areas that account for much of the depth change. Large-amplitude nonlinear internal gravity waves incident on the site from the east were observed to change amplitude, horizontal length scale, and energy when shoaling. Beginning as relatively narrow solitary waves of depression, these waves continued onto the shelf much broadened in horizontal scale, where they were trailed by numerous waves of elevation (alternatively described as oscillations) that first appeared in the continental slope region. Internal gravity waves of both diurnal and semidiurnal tidal frequencies (internal tides) were also observed to propagate into shallow water from deeper water, with the diurnal waves dominating. The internal tides were at times sufficiently nonlinear to break down into bores and groups of high-frequency nonlinear internal waves.
Stanton, T. K., Chu, D., Jech, J. M., and Irish, J. D. 2010. New broadband methods for resonance classification and high-resolution imagery of fish with swimbladders using a modified commercial broadband echosounder. – ICES Journal of Marine Science, 67: 365–378. A commercial acoustic system, originally designed for seafloor applications, has been adapted for studying fish with swimbladders. The towed system contains broadband acoustic channels collectively spanning the frequency range 1.7–100 kHz, with some gaps. Using a pulse-compression technique, the range resolution of the echoes is ∼20 and 3 cm in the lower and upper ranges of the frequencies, respectively, allowing high-resolution imaging of patches and resolving fish near the seafloor. Measuring the swimbladder resonance at the lower frequencies eliminates major ambiguities normally associated with the interpretation of fish echo data: (i) the resonance frequency can be used to estimate the volume of the swimbladder (inferring the size of fish), and (ii) signals at the lower frequencies do not depend strongly on the orientation of the fish. At-sea studies of Atlantic herring demonstrate the potential for routine measurements of fish size and density, with significant improvements in accuracy over traditional high-frequency narrowband echosounders. The system also detected patches of scatterers, presumably zooplankton, at the higher frequencies. New techniques for quantitative use of broadband systems are presented, including broadband calibration and relating target strength and volume-scattering strength to quantities associated with broadband signal processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.