Atmospheric iodine monoxide (IO) is a radical that catalytically destroys heat trapping ozone and reacts further to form aerosols. Here, we report the detection of IO in the tropical free troposphere (FT). We present vertical profiles from airborne measurements over the Pacific Ocean that show significant IO up to 9.5 km altitude and locate, on average, two-thirds of the total column above the marine boundary layer. IO was observed in both recent deep convective outflow and aged free tropospheric air, suggesting a widespread abundance in the FT over tropical oceans. Our vertical profile measurements imply that most of the IO signal detected by satellites over tropical oceans could originate in the FT, which has implications for our understanding of iodine sources. Surprisingly, the IO concentration remains elevated in a transition layer that is decoupled from the ocean surface. This elevated concentration aloft is difficult to reconcile with our current understanding of iodine lifetimes and may indicate heterogeneous recycling of iodine from aerosols back to the gas phase. Chemical model simulations reveal that the iodine-induced ozone loss occurs mostly above the marine boundary layer (34%), in the transition layer (40%) and FT (26%) and accounts for up to 20% of the overall tropospheric ozone loss rate in the upper FT. Our results suggest that the halogen-driven ozone loss in the FT is currently underestimated. More research is needed to quantify the widespread impact that iodine species of marine origin have on free tropospheric composition, chemistry, and climate.atmospheric chemistry | oxidative capacity | halogens | heterogeneous chemistry | air-sea exchange R eactive iodine impacts atmospheric chemistry in several ways. Catalytic reaction cycles involving iodine atoms and iodine monoxide (IO; I x = I + IO) destroy tropospheric ozone, which is a primary source for OH radicals (1, 2). Halogens contribute ∼45% of the ozone loss in the remote tropical marine boundary layer (MBL) (2-4). IO further affects the oxidative capacity of the atmosphere through fast reactions with HO 2 radicals and the resulting changes in HO x (HO x = OH + HO 2 ) (1, 2). Iodine also affects NO x (NO x = NO + NO 2 ) by oxidizing NO to NO 2 (1-4). Additionally, bromine atom recycling by IO increases ozone destruction and mercury oxidation rates in the MBL, resulting in higher mercury deposition rates to ecosystems and increased availability to the food chain (2, 5, 6). Finally, in coastal regions, the formation of ultrafine aerosol particles from iodine oxides can be a source of cloud condensation nuclei that can modify Earth's albedo and thus, the radiative budget of the atmosphere (2, 7).Oceans are the main source of iodine to the atmosphere. Most current knowledge of iodine sources and chemistry is based on measurements in the MBL (3,(8)(9)(10)(11)(12)(13). IO observations at coastal MBL sites primarily link iodine sources to macroalgae (8-10). More recent studies have measured IO at open ocean sites (3, 11-13), suggesting that ther...
The Convective Transport of Active Species in the Tropics (CONTRAST) experiment was conducted from Guam (13.5° N, 144.8° E) during January-February 2014. Using the NSF/NCAR Gulfstream V research aircraft, the experiment investigated the photochemical environment over the tropical western Pacific (TWP) warm pool, a region of massive deep convection and the major pathway for air to enter the stratosphere during Northern Hemisphere (NH) winter. The new observations provide a wealth of information for quantifying the influence of convection on the vertical distributions of active species. The airborne in situ measurements up to 15 km altitude fill a significant gap by characterizing the abundance and altitude variation of a wide suite of trace gases. These measurements, together with observations of dynamical and microphysical parameters, provide significant new data for constraining and evaluating global chemistry climate models. Measurements include precursor and product gas species of reactive halogen compounds that impact ozone in the upper troposphere/lower stratosphere. High accuracy, in-situ measurements of ozone obtained during CONTRAST quantify ozone concentration profiles in the UT, where previous observations from balloon-borne ozonesondes were often near or below the limit of detection. CONTRAST was one of the three coordinated experiments to observe the TWP during January-February 2014. Together, CONTRAST, ATTREX and CAST, using complementary capabilities of the three aircraft platforms as well as ground-based instrumentation, provide a comprehensive quantification of the regional distribution and vertical structure of natural and pollutant trace gases in the TWP during NH winter, from the oceanic boundary to the lower stratosphere.
A series of simulations for 15 events occurring during August 2002 were performed using the Weather Research and Forecasting (WRF) model over a domain encompassing most of the central United States to compare the sensitivity of warm season rainfall forecasts with changes in model physics, dynamics, and initial conditions. Most simulations were run with 8-km grid spacing. The Advanced Research WRF (ARW) and the nonhydrostatic mesoscale model (NMM) dynamic cores were used. One physics package (denoted NCEP) used the Betts-Miller-Janjic convective scheme with the Mellor-Yamada-Janjic planetary boundary layer (PBL) scheme and GFDL radiation package; the other package (denoted NCAR) used the Kain-Fritsch convective scheme with the Yonsei University PBL scheme and the Dudhia rapid radiative transfer model radiation. Other physical schemes were the same (e.g., the Noah land surface model, Ferrier et al. microphysics) in all runs. Simulations suggest that the sensitivity of the model to changes in physics is a function of which the dynamic core is used, and the sensitivity to the dynamic core is a function of the physics used. The greatest sensitivity in general is associated with a change in physics packages when the NMM core is used. Sensitivity to a change in physics when the ARW core is used is noticeably less. For light rainfall, the spread in the rainfall forecasts when physics are changed under the ARW core is actually less at most times than when the dynamic core is changed while NCAR physics are used. For light rainfall, the WRF model using NCAR physics is much more sensitive to a change in dynamic core than the WRF model using NCEP physics. For heavier rainfall, the opposite is true with a greater sensitivity occurring when NCEP physics is used. Sensitivity to initial conditions (Eta versus the Rapid Update Cycle with an accompanying small change in grid spacing) is generally less substantial than the sensitivity to changes in dynamic core or physics, except in the first 6-12 h of the forecast when it is comparable. As might be expected for warm season rainfall, the finescale structure of rainfall forecasts is more affected by the physics used than the dynamic core used. Surprisingly, however, the overall areal coverage and rain volume within the domain may be more influenced by the dynamic core choice than the physics used. and the nonhydrostatic mesoscale model (NMM) dynamic cores were used. One physics package (denoted NCEP) used the Betts-Miller-Janjic convective scheme with the Mellor-Yamada-Janjic planetary boundary layer (PBL) scheme and GFDL radiation package; the other package (denoted NCAR) used the Kain-Fritsch convective scheme with the Yonsei University PBL scheme and the Dudhia rapid radiative transfer model radiation. Other physical schemes were the same (e.g., the Noah land surface model, Ferrier et al. microphysics) in all runs. Simulations suggest that the sensitivity of the model to changes in physics is a function of which the dynamic core is used, and the sensitivity to the dynamic...
Air parcels with mixing ratios of high O3 and low H2O (HOLW) are common features in the tropical western Pacific (TWP) mid-troposphere (300–700 hPa). Here, using data collected during aircraft sampling of the TWP in winter 2014, we find strong, positive correlations of O3 with multiple biomass burning tracers in these HOLW structures. Ozone levels in these structures are about a factor of three larger than background. Models, satellite data and aircraft observations are used to show fires in tropical Africa and Southeast Asia are the dominant source of high O3 and that low H2O results from large-scale descent within the tropical troposphere. Previous explanations that attribute HOLW structures to transport from the stratosphere or mid-latitude troposphere are inconsistent with our observations. This study suggest a larger role for biomass burning in the radiative forcing of climate in the remote TWP than is commonly appreciated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.