When an acoustic wave strikes the ground surface, energy is coupled into the motion of the fluid/solid frame comprising the ground. This phenomenon is termed acoustic-to-seismic (A/S) coupling. In the ground, the Biot Type II or Biot slow waves travel with a speed well below the speed of sound in air. The porous nature of the ground causes the entering acoustic wave to bend toward the normal and the acoustic wave propagates downward into the ground. When an object is buried a few cm below the ground surface, it distinctly changes the A/S coupled motion. These changes can be sensed by measuring vibrational particle velocity on the ground surface. Taking advantage of a noncontact remote measurement technique, the A/S coupling measurements for antitank landmine detection are conducted using a laser Doppler-vibrometer (LDV). Recent field measurements in both calibration and blind mine lanes and the resulting data analyses, which demonstrate the effectiveness of this technique, are described in this paper.
An acoustic-to-seismic system to detect buried antipersonnel mines exploits airborne acoustic waves penetrating the surface of the ground. Acoustic waves radiating from a sound source above the ground excite Biot type I and II compressional waves in the porous soil. The type I wave and type II waves refract toward the normal and cause air and soil particle motion. If a landmine is buried below the surface of the insonified area, these waves are scattered or reflected by the target, resulting in distinct changes to the acoustically coupled ground motion. A scanning laser Doppler vibrometer measures the motion of the ground surface. In the past, this technique has been employed with remarkable success in locating antitank mines during blind field tests [Sabatier and Xiang, IEEE Trans. Geosci. Remote Sens. 39, 1146-1154 (2001)]. The humanitarian demining mission requires an ability to locate antipersonnel mines, requiring a surmounting of additional challenges due to a plethora of shapes and smaller sizes. This paper describes an experimental study on the methods used to locate antipersonnel landmines in recent field measurements.
The acoustic signature of a footstep is one of several signatures that can be exploited for human recognition. Early research showed the maximum value for the force of multiple footsteps to be in the frequency band of 1-4 Hz. This paper reports on the broadband frequency-dependent vibrations and sound pressure responses of human footsteps in buildings. Past studies have shown that the low-frequency band (below 500 Hz) is well known in the literature, and generated by the force normal to the ground/floor. The seismic particle velocity response to footsteps was shown to be site specific and the characteristic frequency band was 20-90 Hz. In this paper, the high-frequency band (above 500 Hz) is investigated. The high-frequency band of the vibration and sound of a human footstep is shown to be generated by the tangential force to the floor and the floor reaction, or friction force. The vibration signals, as a function of floor coverings and walking style, were studied in a broadband frequency range. Different walking styles result in different vibration signatures in the low-frequency range. However, for the walking styles tested, the magnitudes in the high-frequency range are comparable and independent of walking style.
To monitor and understand the temporal variations of sound speed due to the changes of soil physical properties such as soil water potential, moisture content, and soil temperature under natural conditions, a long‐term field soil survey has been conducted. In this study, transmitter and receiver acoustic probes, consisting of ten (five pairs) and five transducers respectively, were inserted into a prepared trench containing a soil‐sand mixture in an outdoor test site. Five time domain reflectometers, five tensiometers, and five thermocouples were buried during the trench‐filling at the same depths as the acoustic transducers. Measurements of sound speed, soil temperature, soil moisture content, and water potential were performed continuously, along with the measurements of surface temperature and precipitation over a period of 2 yr. Analysis of the data shows that there is a power law relationship between the sound speed and water potential. It is also found that the water potential is the dominant influence on the sound speed whereas the moisture content and temperature have relatively minor impacts. Brutsaert and Luthin's theory was employed to calculate the sound speed as a function of the effective stress. The theoretical predictions were compared with the experimental data and they are in good agreement. The study suggests that sound speed measurement could be used as a new and effective tool for water potential measurement.
When an airborne acoustic wave is incident at the ground surface, energy is coupled into the ground as seismic motion. In a previous publication [Sabatier et al., J. Acoust. Soc. Am. 78, 1345–1352 (1986)] the ground surface was modeled as an air-filled poroelastic layer overlying a semi-infinite, nonporous elastic substrate. In this work, the model is extended to include calculations of the normal seismic transfer function (ratio of the normal soil particle velocity at a depth d to the acoustic pressure at the surface). Measurements of the seismic transfer function for three sites are considered and compared to the predicted values. Generally good agreement between theory and experiment is achieved by best fits assuming the soil or seismic attenuation. This is accomplished by specifying the ratio of the imaginary to real part of the measured seismic p- and s-wave speeds. The seismic transfer functions quite typically exhibit minima and maxima which are associated with the seismic layering of the ground surface. Typical layer depths are 1–2 m. An analytical expression predicting the location of these maxima is offered based on hard substrate and the experimental and theoretical comparisons are reasonable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.