Microtubule flux in spindles of insect spermatocytes, long-used models for studies on chromosome behavior during meiosis, was revealed after iontophoretic microinjection of rhodamine-conjugated (rh)-tubulin and fluorescent speckle microscopy. In time-lapse movies of crane-fly spermtocytes, fluorescent speckles generated when rh-tubulin incorporated at microtubule plus ends moved poleward through each half-spindle and then were lost from microtubule minus ends at the spindle poles. The average poleward velocity of approximately 0.7 microm/min for speckles within kinetochore microtubules at metaphase increased during anaphase to approximately 0.9 microm/min. Segregating half-bivalents had an average poleward velocity of approximately 0.5 microm/min, about half that of speckles within shortening kinetochore fibers. When injected during anaphase, rhtubulin was incorporated at kinetochores, and kinetochore fiber fluorescence spread poleward as anaphase progressed. The results show that tubulin subunits are added to the plus end of kinetochore microtubules and are removed from their minus ends at the poles, all while attached chromosomes move poleward during anaphase A. The results cannot be explained by a Pac-man model, in which 1) kinetochore-based, minus end-directed motors generate poleward forces for anaphase A and 2) kinetochore microtubules shorten at their plus ends. Rather, in these cells, kinetochore fiber shortening during anaphase A occurs exclusively at the minus ends of kinetochore microtubules.
We applied a combination of laser microsurgery and quantitative polarization microscopy to study kinetochore-independent forces that act on chromosome arms during meiosis in crane fly spermatocytes. When chromosome arms located within one of the half-spindles during prometaor metaphase were cut with the laser, the acentric fragments (lacking kinetochores) that were generated moved poleward with velocities similar to those of anaphase chromosomes (ϳ0.5 m/min). To determine the mechanism underlying this poleward motion of detached arms, we treated spermatocytes with the microtubule-stabilizing drug taxol. Spindles in taxol-treated cells were noticeably short, yet with polarized light, the distribution and densities of microtubules in domains where fragment movement occurred were not different from those in control cells. When acentric fragments were generated in taxol-treated spermatocytes, 22 of 24 fragments failed to exhibit poleward motion, and the two that did move had velocities attenuated by 80% (to ϳ0.1 m/min). In these cells, taxol did not inhibit the disjunction of chromosomes nor prevent their poleward segregation during anaphase, but the velocity of anaphase was also decreased 80% (ϳ0.1 m/min) relative to untreated controls. Together, these data reveal that microtubule flux exerts pole-directed forces on chromosome arms during meiosis in crane fly spermatocytes and strongly suggest that the mechanism underlying microtubule flux also is used in the anaphase motion of kinetochores in these cells.
The article describes combined orientation-independent (OI-) DIC and polarization microscope and its biological applications. Several conventional DIC images were recorded with the specimen oriented in different directions followed by digital alignment and processing of the images. Then the obtained images are used for computation of the phase gradient magnitude and azimuth distribution, and, further, the phase image. The OI-DIC images were obtained using optics having numerical aperture 1.4, thus achieving a level of resolution never before achieved with any phase contrast or interference microscope. The combined system yields two complementary phase images of thin optical sections of the specimen: distribution of refractive index and distribution of birefringence due to anisotropy of the cell structure. For instance, in a live dividing cell, the OI-DIC image clearly shows the detailed shape of the chromosomes while the polarization image quantitatively depicts the distribution of birefringent microtubules in the spindle, both without any need for staining or other modifications of the cell. We present pseudo-color combined images of a crane-fly spermatocyte at diakinesis and metaphase of meiosis I. Those images provide clear evidence that the proposed technique can reveal fine architecture and molecular organization in live cells without perturbation associated with staining or fluorescent labeling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.