Necrotizing enterocolitis (NEC) is a life-threatening gastrointestinal disorder afflicting preterm infants, which is currently unpreventable. Fecal microbiota transplantation (FMT) is a promising preventive therapy, but the transfer of pathogenic microbes or toxic compounds raise concern. Removal of bacteria from donor feces by micropore filtering may reduce this risk of bacterial infection, while residual bacteriophages could maintain the NEC-preventive effects. We aimed to assess preclinical efficacy and safety of fecal filtrate transplantation (FFT). Using fecal material from healthy suckling piglets, we compared rectal FMT administration (FMT, n = 16) with cognate FFT by either rectal (FFTr, n = 14) or oro-gastric administration (FFTo, n = 13) and saline (CON, n = 16) in preterm, cesarean-delivered piglets as models for preterm infants. We assessed gut pathology and analyzed mucosal and luminal bacterial and viral composition using 16S rRNA gene amplicon and meta-virome sequencing. Finally, we used isolated ileal mucosa, coupled with RNA-Seq, to gauge the host response to the different treatments. Oro-gastric FFT completely prevented NEC, which was confirmed by microscopy, whereas FMT did not perform better than control. Oro-gastric FFT increased viral diversity and reduced Proteobacteria relative abundance in the ileal mucosa relative to control. An induction of mucosal immunity was observed in response to FMT but not FFT. As preterm infants are extremely vulnerable to infections, rational NEC-preventive strategies need incontestable safety profiles. We show in a clinically relevant animal model that FFT, as opposed to FMT, efficiently prevents NEC without any recognizable side effects.
Physiologically and anatomically, humans and pigs share many similarities, which make porcine induced pluripotent stem cells (piPSCs) very attractive for modeling human cell therapy as well as for testing safety of iPSC based cell replacement therapies. To date, several integrative and nonintegrative strategies have been reported to successfully generate piPSCs, but all resulting piPSCs had integration of transgenes. The use of integrative methods has the disadvantage of potential lack of silencing or inappropriate re-activation of these genes during differentiation, as well as uncertainty regarding disruption of important genomic regions caused by integration. In our study, we performed a non-integrative vector based reprogramming approach using porcine fetal fibroblasts. The resulting four piPSC lines were positive for pluripotency marker and when subjected to in vitro and in vivo differentiation assays, all four lines formed embryoid bodies, capable to differentiate into all three germ layers, and three out of the four cell lines formed teratomas. PCR analysis on genomic and plasmid DNA revealed that the episomal vectors were undetectable in six out of eight subclones derived from one of the piPSC lines (piPSC1) above passage 20. These piPSCs could potentially be ideal cell lines for the generation of porcine in vitro and in vivo models. Furthermore, subsequent analyses of our new transgene independent piPSCs could provide novel insights on the genetic and epigenetic necessities to achieve and maintain piPSCs.
SUMMARYDerivation and stable maintenance of porcine induced pluripotent stem cells (piPSCs) is challenging. We herein systematically analyzed two piPSC lines, derived by lentiviral transduction and cultured under either leukemia inhibitory factor (LIF) or fibroblast growth factor (FGF) conditions, to shed more light on the underlying biological mechanisms of porcine pluripotency. LIF‐derived piPSCs were more successful than their FGF‐derived counterparts in the generation of in vitro chimeras and in teratoma formation. When LIF piPSCs chimeras were transferred into surrogate sows and allowed to develop, only their prescence within the embryonic membranes could be detected. Whole‐transcriptome analysis of the piPSCs and porcine neonatal fibroblasts showed that they clustered together, but apart from the two pluripotent cell populations of early porcine embryos, indicating incomplete reprogramming. Indeed, bioinformatic analysis of the pluripotency‐related gene network of the LIF‐ versus FGF‐derived piPSCs revealed that ZFP42 (REX1) expression was absent in both piPSC‐like cells, whereas it was expressed in the porcine inner cell mass at Day 7/8. A second striking difference was the expression of ATOH1 in piPSC‐like cells, which was absent in the inner cell mass. Moreover, our gene expression analyses plus correlation analyses of known pluripotency genes identified unique relationships between pluripotency genes in the inner cell mass, which are to some extent, in the piPSC‐like cells. This deficiency in downstream gene activation and divergent gene expression may be underlie the inability to derive germ line‐transmitting piPSCs, and provides unique insight into which genes are necessary to achieve fully reprogrammed piPSCs. 84: 229–245, 2017. © 2016 Wiley Periodicals, Inc.
Advanced animal models, such as minipigs, are needed for the development of a globally requested human Chlamydia vaccine. Previous studies have shown that vaginal inoculation of sexually mature Göttingen minipigs with Chlamydia trachomatis resulted in an infection lasting only 3-5 days. The aim of this study was to evaluate the effect of targeting the upper porcine genital tract by transcervical and transabdominal intrauterine inoculation, compared to previously performed vaginal inoculation. Furthermore, we investigated the effect of the hormonal cycle, estrus vs. diestrus, on the establishment of a C. trachomatis infection in the minipig. Targeting the upper genital tract (transcervical inoculation) resulted in a longer lasting infection (at least 7 days) compared to vaginal inoculation (3-5 days). When comparing intrauterine inoculation during estrus and diestrus, inoculation during diestrus resulted in a longer lasting infection (at least 10 days) compared to estrus (3-5 days). Furthermore, we found a significant C. trachomatis specific IFN-γ response in pigs inoculated during estrus correlating with the accelerated clearance of infection in these pigs. These findings suggest that for implementation of an optimal model of C. trachomatis in minipigs, inoculation should bypass the cervix and preferable be performed during diestrus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.