Objective: To investigate gender differences in basic disease characteristics, motor deterioration and nigrostriatal degeneration in Parkinson's disease (PD). Methods: We studied 253 consecutive PD patients who were not receiving levodopa or dopamine agonists (disease duration (10 years). We investigated the influence of gender and oestrogen status on: (1) age at onset, (2) presenting symptom, (3) severity and progression of motor symptoms (Unified Parkinson's Disease Rating Scale III (UPDRS-III) scores) and (4) amount and progression of nigrostriatal degeneration ([ 123 I]FP-CIT single photon emission computed tomography measurements). Results: Age at onset was 2.1 years later in women (53.4 years) than in men (51.3 years). In women, age at onset correlated positively with parity, age at menopause and fertile life span. Women more often presented with tremor (67%) than men (48%). Overall, patients presenting with tremor had a 3.6 year higher age at onset and a 38% slower UPDRS-III deterioration. Mean UPDRS-III scores at disease onset were equal for both genders, as was the rate of deterioration. Women had a 16% higher striatal [123 I]FP-CIT binding than men at symptom onset and throughout the course of PD. Conclusions: Our results suggest that, in women, the development of symptomatic PD may be delayed by higher physiological striatal dopamine levels, possibly due to the activity of oestrogens. This could explain the epidemiological observations of a lower incidence and higher age at onset in women. Women also presented more often with tremor which, in turn, is associated with milder motor deterioration and striatal degeneration. Taken together, these findings suggest a more benign phenotype in women with PD.
Olfactory dysfunction is an early and common symptom in Parkinson's disease (PD). In an effort to determine whether otherwise unexplained (idiopathic) olfactory dysfunction is associated with an increased risk of developing PD, we designed a prospective study in a cohort of 361 asymptomatic relatives (parents, siblings, or children) of PD patients. A combination of olfactory detection, identification, and discrimination tasks was used to select groups of hyposmic (n ؍ 40) and normosmic (n ؍ 38) individuals for a 2-year clinical follow-up evaluation and sequential single-photon emission computed tomography (SPECT), using [123 I]-CIT as a dopamine transporter ligand, to assess nigrostriatal dopaminergic function at baseline and 2 years from baseline. A validated questionnaire, sensitive to the presence of parkinsonism, was used in the follow-up of the remaining 283 relatives. Two years from baseline, 10% of the individuals with idiopathic hyposmia, who also had strongly reduced [123 I]-CIT binding at baseline, had developed clinical PD as opposed to none of the other relatives in the cohort. In the remaining nonparkinsonian hyposmic relatives, the average rate of decline in dopamine transporter binding was significantly higher than in the normosmic relatives. These results indicate that idiopathic olfactory dysfunction is associated with an increased risk of developing PD of at least 10%.
These guidelines summarize the current views of the European Association of Nuclear Medicine Neuroimaging Committee (ENC). The purpose of the guidelines is to assist nuclear medicine practitioners in making recommendations, performing, interpreting, and reporting the results of fluorine-18 fluoro-2-deoxyglucose ([(18)F]FDG) PET imaging of the brain. The aim is to help achieve a high standard of FDG imaging, which will increase the diagnostic impact of this technique in neurological and psychiatric practice. The present document replaces a former version of the guidelines that were published in 2002 [1] and includes an update in the light of advances in PET technology, the introduction of hybrid PET/CT systems and the broadening clinical indications for FDG brain imaging. These guidelines are intended to present information specifically adapted for European practice. The information provided should be taken in the context of local conditions and regulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.