This experimental study is focused on the mechanisms of thermal atomisation of a drop impacting onto a hot substrate. This phenomenon is characterised by the wetting and dewetting of the substrate, caused not by the rim dynamics, but induced by thermal effects. These thermal effects lead to the lamella evaporation, levitation and disintegration, generation of a vertical spray of fine droplets and consequently, drop breakup. A typical contact time of the drop before complete detachment is theoretically estimated. This estimation agrees very well with the experiments. It is shown that the Weber number, often used for describing splashing drops, is not a relevant parameter for thermal atomisation. Finally, a regime map is plotted, using a combination of the dimensionless contact time and the dimensionless heat flux at the substrate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.