European managed grasslands are amongst the most productive in the world. Besides temperature and the amount and timing of precipitation, grass production is also highly controlled by applications of nitrogen fertilizers and land management to sustain a high productivity. Since management characteristics of pastures vary greatly across Europe, land-use intensity and their projections are critical input variables in earth system modeling when examining and predicting the effects of increasingly intensified agricultural and livestock systems on the environment. In this study, we aim to improve the representation of pastures in the dynamic global vegetation model LPJ-GUESS. This is done by incorporating daily carbon allocation for grasses as a foundation to further implement daily land management routines and land-use intensity data into the model to discriminate between intensively and extensively used regions. We further compare our new simulations with leaf area index observations, reported regional grassland productivity, and simulations conducted with the vegetation model ORCHIDEE-GM. Additionally, we analyze the implications of including pasture fertilization and daily management compared to the standard version of LPJ-GUESS. Our results demonstrate that grassland productivity cannot be adequately captured without including land-use intensity data in form of nitrogen applications. Using this type of information improved spatial patterns of grassland productivity significantly compared to standard LPJ-GUESS. In general, simulations for net primary productivity, net ecosystem carbon balance and nitrogen leaching were considerably increased in the extended version. Finally, the adapted version of LPJ-GUESS, driven with projections of climate and land-use intensity, simulated an increase in potential grassland productivity until 2050 for several agro-climatic regions, most notably for the Mediterranean North, the Mediterranean South, the Atlantic Central and the Atlantic South.
In this study, we systematically assess the spatial variability in carbon and nitrogen balance simulations related to the choice of global circulation models (GCMs), representative concentration pathways (RCPs), spatial resolutions, and the downscaling methods used as calculated with LPJ‐GUESS. We employed a complete factorial design and performed 24 simulations for Europe with different climate input data sets and different combinations of these four factors. Our results reveal that the variability in simulated output in Europe is moderate with 35.6%–93.5% of the total variability being common among all combinations of factors. The spatial resolution is the most important factor among the examined factors, explaining 1.5%–10.7% of the total variability followed by GCMs (0.3%–7.6%), RCPs (0%–6.3%), and downscaling methods (0.1%–4.6%). The higher‐order interactions effect that captures nonlinear relations between the factors and random effects is pronounced and accounts for 1.6%–45.8% to the total variability. The most distinct hot spots of variability include the mountain ranges in North Scandinavia and the Alps, and the Iberian Peninsula. Based on our findings, we advise to conduct the application of models such as LPJ‐GUESS at a reasonably high spatial resolution which is supported by the model structure. There is no notable gain in simulations of ecosystem carbon and nitrogen stocks and fluxes from using regionally downscaled climate in preference to bias‐corrected, bilinearly interpolated CMIP5 projections.
With growing tourism in natural areas, monitoring recreational impacts is becoming increasingly important. This paper aims to evaluate how different trampling intensities affect some common Icelandic plant communities by using digital photographs to analyze and quantify vegetation in experimental plots and to monitor vegetation recovery rates over a consecutive three-year period. Additionally, it seeks to evaluate the use of image analysis for monitoring recreational impact in natural areas. Experimental trampling was conducted in two different sites representing the lowlands and the highlands in 2014, and the experimental plots were revisited in 2015, 2016, and 2017. The results show that moss has the highest sensitivity to trampling, and furthermore has a slow recovery rate. Moss-heaths in the highlands also show higher sensitivity and slower recovery rates than moss-heaths in the lowlands, and grasslands show the highest resistance to trampling. Both methods tested, i.e., Green Chromatic Coordinate (GCC) and Maximum Likelihood Classification (MLC), showed significant correlation with the trampling impact. Using image analysis to quantify the status and define limits of use will likely be a valuable and vital element in managing recreational areas. Unmanned aerial vehicles (UAVs) will add a robust way to collect photographic data that can be processed into vegetation parameters to monitor recreational impacts in natural areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.