Despite many decades of research, biofilm architecture and spreading mechanisms are still not clear because of the heterogenous 3D structure within biofilms. Here, patterned “slippery” lubricant‐infused porous surfaces are utilized to study biofilm structure of Pseudomonas aeruginosa , Stenotrophomonas maltophilia , and Staphylococcus aureus . It is found that bacteria are able to spread over bacteria‐repellent lubricant‐infused regions by using a mechanism, termed “biofilm bridges”. Here, it is demonstrated that bacteria use bridges to form interconnected networks between distant biofilm colonies. Detailed structure of bridges shows a spatial distribution of bacteria with an accumulation of respiratory active bacteria and biomass in the bridges. The core–shell structure of bridges formed by two‐species mixed population is illustrated. It is demonstrated that eDNA and nutrients have a strong effect on biofilm bridges formation. Thus, it is believed that biofilm bridging is important to reveal the structure and communication within biofilms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.