Studies on the influence of four different solvents on the morphology and photovoltaic performance of bulk‐heterojunction films made of poly(3‐hexylthiophene) (P3HT) and [6,6]‐phenyl‐C61 butyric acid methyl ester (PCBM) via spin‐coating for photovoltaic applications are reported. Solvent‐dependent PCBM cluster formation and P3HT crystallization during thermal annealing are investigated with optical microscopy and grazing‐incidence wide‐angle X‐ray scattering (GIWAXS) and are found to be insufficient to explain the differences in device performance. A combination of atomic force microscopy (AFM), X‐ray reflectivity (XRR), and grazing‐incidence small‐angle X‐ray scattering (GISAXS) investigations results in detailed knowledge of the inner film morphology of P3HT:PCBM films. Vertical and lateral phase separation occurs during spin‐coating and annealing, depending on the solvent used. The findings are summarized in schematics and compared with the IV characteristics. The main influence on the photovoltaic performance arises from the vertical material composition and the existence of lateral phase separation fitting to the exciton diffusion length. Absorption and photoluminescence measurements complement the structural analysis.
The P03 beamline, also called the microfocus and nanofocus X-ray scattering (MiNaXS) beamline, exploits the excellent photon beam properties of the lowemittance source PETRA III to provide a microfocused/nanofocused beam with ultra-high intensity for time-resolved X-ray scattering experiments. The beamline has been designed to perform X-ray scattering in both transmission and reflection geometries. The microfocus endstation started user operation in May 2011. An overview of the beamline status and of some representative results highlighting the performance of the microfocus endstation at MiNaXS are given.
The adjustment of size-dependent catalytic, electrical and optical properties of gold cluster assemblies is a very significant issue in modern applied nanotechnology. We present a real-time investigation of the growth kinetics of gold nanostructures from small nuclei to a complete gold layer during magnetron sputter deposition with high time resolution by means of in situ microbeam grazing incidence small-angle X-ray scattering (μGISAXS). We specify the four-stage growth including their thresholds with sub-monolayer resolution and identify phase transitions monitored in Yoneda intensity as a material-specific characteristic. An innovative and flexible geometrical model enables the extraction of morphological real space parameters, such as cluster size and shape, correlation distance, layer porosity and surface coverage, directly from reciprocal space scattering data. This approach enables a large variety of future investigations of the influence of different process parameters on the thin metal film morphology. Furthermore, our study allows for deducing the wetting behavior of gold cluster films on solid substrates and provides a better understanding of the growth kinetics in general, which is essential for optimization of manufacturing parameters, saving energy and resources.
Micelles are the simplest example of self-assembly found in nature. As many other colloids, they can self-assemble in aqueous solution to form ordered periodic structures. These structures so far all exhibited classical crystallographic symmetries. Here we report that micelles in solution can self-assemble into quasicrystalline phases. We observe phases with 12-fold and 18-fold diffraction symmetry. Colloidal water-based quasicrystals are physically and chemically very simple systems. Macroscopic monodomain samples of centimeter dimension can be easily prepared. Phase transitions between the fcc phase and the two quasicrystalline phases can be easily followed in situ by time-resolved diffraction experiments. The discovery of quasicrystalline colloidal solutions advances the theoretical understanding of quasicrystals considerably, as for these systems the stability of quasicrystalline states has been theoretically predicted for the concentration and temperature range, where they are experimentally observed. Also for the use of quasicrystals in advanced materials this discovery is of particular importance, as it opens the route to quasicrystalline photonic band gap materials via established water-based colloidal self-assembly techniques. Micelles are the simplest type of self-assembly structure found in nature. They are formed by the association of amphiphilic molecules in solution. Micelles are ubiquitous colloids being used in washing detergents, for the solubilization of pharmaceuticals as well as for the preparation of advanced materials (1). Above concentrations of about 10%, there is an order-disorder transition, where micelles self-assemble into liquid crystalline structures. In the case of spherical micelles, the most common structure types are of cubic symmetry with space groups Fm3m (fcc) or Im3m (body-centered cubic).We were investigating the liquid crystalline phase behavior of polymeric micelles in this concentration range in greater detail. For this investigation we used block copolymer micelles that have a well-defined micellar core containing the hydrophobic polymer blocks, surrounded by a relatively large shell consisting of the hydrophilic polymer blocks. As block copolymers we used polyðisoprene-b-ethylene oxideÞ, PI n -PEO m , with different degrees of polymerization n and m of the respective polymer blocks. By shear orientation using plate-plate or Searle-type rheometers, large monodomain samples of centimeter dimension can be prepared that allows one to determine the liquid crystalline structure by using small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS) (2). ResultsWhen investigating the phase behavior of PI 30 -PEO 120 micelles near the order-disorder transition with synchrotron SAXS and SANS, we discovered phases with diffraction patterns of 12-(Q12) and 18-fold (Q18) diffraction symmetry (Fig. 1). With increasing concentration we find at a temperature of 20°C a sequence of phases Disordered j13%jQ12j18%j Cubic (fcc). In the concentration range between 13 and 18%...
The flow orientation of anisotropic particles through narrow channels is of importance in many fields, ranging from the spinning and molding of fibers to the flow of cells and proteins through thin capillaries. It is commonly assumed that anisotropic particles align parallel to the flow direction. When flowing through narrowed channel sections, one expects the increased flow rate to improve the parallel alignment. Here, we show by microfocus synchrotron X-ray scattering and polarized optical microscopy that anisotropic colloidal particles align perpendicular to the flow direction after passing a narrow channel section. We find this to be a general behavior of anisotropic colloids, which is also observed for disk-like particles. This perpendicular particle alignment is stable, extending downstream throughout the remaining part of the channel. We show by microparticle image velocimetry that the particle reorientation in the expansion zone after a narrow channel section occurs in a region with considerable extensional flow. This extensional flow is promoted by shear thinning, a typical property of complex fluids. Our discovery has important consequences when considering the flow orientation of polymers, micelles, fibers, proteins, or cells through narrow channels, pipes, or capillary sections. An immediate consequence for the production of fibers is the necessity for realignment by extension in the flow direction. For fibrous proteins, reorientation and stable plug flow are likely mechanisms for protein coagulation.block copolymers | microfluidics | small-angle X-ray scattering T he flow orientation of anisotropic particles in narrow channels is relevant in many fields, ranging from the spinning and molding of fibers to the flow of cells or proteins through thin capillaries (1-4). It is commonly assumed that anisotropic particles align parallel to the flow direction (5). When flowing through thin channel sections, one expects the increased flow rate to improve the alignment. We investigated the alignment of anisotropic colloids (i.e., cylindrical micelles) flowing through thin sections of microchannels using synchrotron microfocus small-angle X-ray diffraction and polarized optical microscopy. Surprisingly, we find that anisotropic colloids orient perpendicular to the flow direction after passing through narrow channel sections. The perpendicular alignment is surprisingly stable, extending throughout the remaining part downstream of the channel. Ongoing experimental studies indicate that this observation holds for other anisotropic cylindrical or disk-like colloids as well. We show by microparticle image velocimetry and finite element fluid dynamics simulations that the perpendicular flow orientation is induced by perpendicular extensional flow in the expansion zone after the narrow section. Only close to the channel walls does shear flow dominate, leading to parallel flow orientation of anisotropic particles.In situ investigations of the flow orientation of colloids in solution under very well-defined flow conditi...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.