Abstract. The accuracy of global atmospheric models used to predict the middle/lower thermosphere characteristics is still an open topic. Uncertainties in the prediction of the gas properties in the thermosphere lead to inaccurate computations of the drag force on space objects (i.e. satellites or debris). Currently the lifetime of space objects and therefore the population of debris in low Earth orbit (LEO) cannot be quantified with a satisfactory degree of accuracy. In this paper, the Global Ionosphere Thermosphere Model (GITM) developed at the University of Michigan has been validated in order to provide detailed simulations of the thermosphere. First, a sensitivity analysis has been performed to investigate the effect of the boundary conditions on the final simulations results. Then, results of simulations have been compared with flight measurements from the CHallenging Minisatellite Payload (CHAMP) and Gravity Recovery and Climate Experiment (GRACE) satellites and with existing semiempirical atmospheric models (IRI and MSIS). The comparison shows a linear dependency of the neutral density values with respect to the solar activity. In particular, GITM shows an over-predicting or under-predicting behaviour under high or low solar activity respectively. The reasons for such behaviour can be attributed to a wrong implementation of the chemical processes or the gas transport properties in the model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.