Advanced Pulsed Laser Deposition (PLD) processes allow the growth of oxide thin film heterostructures on large area substrates up to 4-inch diameter, with flexible and controlled doping, low dislocation density, and abrupt interfaces. These PLD processes are discussed and their capabilities demonstrated using selected results of structural, electrical, and optical characterization of superconducting (YBa2Cu3O7−δ), semiconducting (ZnO-based), and ferroelectric (BaTiO3-based) and dielectric (wide-gap oxide) thin films and multilayers. Regarding the homogeneity on large area of structure and electrical properties, flexibility of doping, and state-of-the-art electronic and optical performance, the comparably simple PLD processes are now advantageous or at least fully competitive to Metal Organic Chemical Vapor Deposition or Molecular Beam Epitaxy. In particular, the high flexibility connected with high film quality makes PLD a more and more widespread growth technique in oxide research.
A strong quantum confined Stark effect (QCSE) was observed in wedge shaped MgZnO/ZnO quantum wells (QWs) grown by pulsed laser deposition. A reduced laser fluence of 1.8 J/cm2 was used. Reference samples grown at higher standard fluence 2.4 J/cm2 showed only a negligible QCSE. Using off-axis deposition without substrate rotation, a constant composition of the barriers was maintained while varying the well width in a wedge shaped QW. A redshift of the QW luminescence with increasing QW thickness up to 230 meV below the ZnO emission was found, accompanied by an increase in the exciton lifetime from 0.3 ns up to 4.2 μs.
Temperature dependence of exciton transfer in hybrid quantum well/nanocrystal heterostructures Appl. Phys. Lett. 91, 092126 (2007); 10.1063/1.2776865 Microprobe spectroscopy of localized exciton states in II-VI quantum wells Localized excitonic transitions in a ZnSe-Zn 0.75 Cd 0.25 Se double-superlattice grown by molecular beam epitaxy Appl.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.