Hedgehog (Hh) signal transduction requires a large cytoplasmic multi-protein complex that binds microtubules in an Hh-dependent manner. Here, we show that three members of this complex, Costal2 (Cos2), Fused (Fu), and Cubitus interruptus (Ci), bind each other directly to form a trimeric complex. We demonstrate that this trimeric signaling complex exists in Drosophila lacking Suppressor of Fused (Su(fu)), an extragenic suppressor of fu, indicating that Su(fu) is not required for the formation, or apparently function, of the Hh signaling complex. However, we subsequently show that Su(fu), although not a requisite component of this complex, does form a tetrameric complex with Fu, Cos2, and Ci. This additional Su(fu)-containing Hh signaling complex does not appear to be enriched on microtubules. Additionally, we demonstrate that in response to Hh Ci accumulates in the nucleus without its various cytoplasmic binding partners, including Su(fu). We discuss a model in which Su(fu) and Cos2 each bind to Fu and Ci to exert some redundant effect on Ci such as cytoplasmic retention. This model is consistent with genetic data demonstrating that Su(fu) is not required for Hh signal transduction proper and with the elaborate genetic interactions observed among Su(fu), fu, cos2, and ci.
The secreted protein hedgehog (Hh) plays a critical role in the developmental patterning of multiple tissues. In Drosophila melanogaster, a cytosolic multiprotein signaling complex appears necessary for Hh signaling. Genes that encode components of this Hh signaling complex (HSC) were originally identified and characterized based on their genetic interactions with hh, as well as with each other. It is only in recent years that the mechanistic functions of these components have begun to be unraveled. Here, we have investigated the relationship between two components of the HSC, the serine/threonine protein kinase Fused (Fu) and the kinesin-related protein Costal2 (Cos2). We have reconstituted a Fu/Cos2 complex in vitro and shown that Fu is able to directly associate with Cos2, forming a complex whose molecular size is similar to a previously described complex found in Drosophila cell extracts. We have also determined that the carboxyl-terminal domain of Fu is necessary and sufficient for the direct binding of Fu to Cos2. To validate the physiological relevance of this interaction, we overexpressed the carboxyl-terminal domain of Fu in wild-type flies. These flies exhibit a phenotype similar to that seen in fu mutants and consistent with an hh loss-of-function phenotype. We conclude that the carboxyl-terminal domain of Fu can function in a dominant negative manner, by preventing endogenous Fu from binding to Cos2. Thus, we provide the first evidence that Hh signaling can be compromised by targeting the HSC for disruption.
The effect of extracellular pH (pH(e)) on the accumulation and cytotoxicity of the diarylsulfonylurea antitumor agent N-(4-methylphenylsulfonyl)-N'-(4-chlorophenyl)urea (MPCU) has been examined. In a human colon adenocarcinoma cell line, GC3/C1, the initial rate of uptake of [3H]MPCU (2.4 microM) was increased by 4.5-fold as pH(e) was reduced from 7.4 to 6.5. Steady state levels of MPCU were inversely proportional to pH(e) and were 5-fold greater at pH 6.0 compared to 7.4. Similar results were obtained using Rh30 cells derived from an alveolar rhabdomyosarcoma. MPCU rapidly re-equilibrated after achieving steady state when pH(e) was altered, indicating that MPCU was not tightly bound within cells. In both cell lines, the uncoupling agent, carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP), significantly reduced (GC3/C1) or completely inhibited (Rh30) accumulation of MPCU at each pH(e) examined. Sodium azide had the same effect on the accumulation of MPCU as FCCP. The effects of FCCP and azide appeared to be due to collapse of the pH differential across the mitochondrial inner membrane rather than the gradient across the plasma membrane. As extracellular pH (pH(e)) decreased, intracellular pH(pH(i)) also decreased in GC3/C1 cells, such that the greatest pH differential (pH(i) - pH(e)) was 0.2 units at pH(e) 6.0. Neither FCCP nor azide significantly altered this pH gradient, indicating a minor role, if any, for the plasma membrane pH gradient in accumulation of MPCU in GC3/C1 cells. The effect of pH(e) (7.4 to 6.0) on cytotoxicity of MPCU was determined after exposure of cells for 4 hr to various concentrations of MPCU in the presence of 10% fetal bovine serum. Decreasing the pH(e) from 7.4 to 6.0 increased the potency of MPCU by 4.7- and 4.5-fold in Rh30 and GC3/C1 cells, respectively. In cells exposed to drug/pH(e) combinations that resulted in 50% reduction in colony forming potential, the steady state levels of [3H]MPCU were similar (range 8.8 +/- 0.9 to 10.56 +/- 0.6 nmol/10(6) cells). These results demonstrate that decrease of pH(e) significantly enhanced the uptake of MPCU accumulation into an FCCP/azide-sensitive compartment, and cytotoxicity of this agent. These data further support the hypothesis that sequestration of diarylsulfonylureas into the FCCP/azide-sensitive compartment (probably mitochondria) was associated with its cytotoxicity. The role of pH(e) in determining therapeutic selectivity of diarylsulfonylureas is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.