Wireless Mesh Networks (WMNs) are one of the few commonly implemented types of mobile ad-hoc networks (MANETs); several companies offer WMNs for broadband Internet access and for extending the coverage of wireless local area networks. Several particularities differentiate WMNs from MANETs. First, in WMNs, most of the traffic originates or terminates at the gateways (nodes connected to the wired infrastructure/Internet). Second, in most applications, WMN nodes tend to be neatly differentiated as either stationary nodes (providing connectivity and coverage) or mobile nodes (utilizing the coverage afforded by the stationary nodes). While general MANET routing protocols can be used in WMNs, it is expected that a protocol that takes the particularities of WMNs into account will outperform the general protocol. In this paper, we propose such a routing protocol and evaluate its performance via simulations. We show that, for WMNs, the proposed routing protocol outperforms general purpose MANET protocols in terms of routing overhead, packet delivery ratio, throughput and delay.
Abstract-Scalable and reliable routing is a critical issue in sensor network deployment. A number of approaches have been proposed for sensor network routing, but sensor field implementation tends to be lacking in the literature. In our study, the problems of scalability and reliability in sensor network routing are addressed through a simple but powerful scheme implemented on Mica2 motes running TinyOS along with other, more widely-used routing protocols. Motes are tested in an outdoor sensor field, and detailed experiments are carried out for performance analysis. This paper presents the implementation details and the results obtained from head-to-head comparison of routing protocols. The proposed protocol delivers 93 % of packets injected at a rate of one packet per second in networks with end to end hop distances of over 10 hops-a result which significantly improves upon results from the standard TinyOS routing implementation of MINTRoute. The promising results can be explained by the key protocol properties of reliability (via multi-path redundancy), scalability (with efficiently contained flooding), and flexibility (source-tunable per-packet priority) which are achieved without adding protocol complexity or resource consumption. These strengths enable the protocol to outperform even sophisticated link estimation based protocols especially in adverse outdoor sensor field environments.
The goal of this paper is to present exact formulae for the throughput of IEEE 802.11 networks in the absence of transmission errors and for various physical layers, data rates and packet sizes. Calculation of the throughput is more than a simple exercise. It is a mandatory part of provisioning any system based on 802.11 technology (whether in ad-hoc or infrastructure mode). We will discuss the practical importance of theoretical maximum throughput and present several applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.