Initially, the pandemic COVID-19, caused by SARS-CoV-2, was considered to be an exclusive lung disease, eventually leading to serious respiratory symptoms 1 . In the meantime, accumulating experimental and clinical studies have suggested that SARS-CoV-2 may also cause lesions in the kidneys, heart, brain, and gastrointestinal and endocrine organs [2][3][4][5][6][7] . SARS-CoV-2 tropism towards distinct tissues is governed by cellular factors expressed on target cells such as the viral entry receptor angiotensin-converting enzyme 2 (ACE2) 8 and the transmembrane serine protease 2 (TMPRSS2) 8 . ACE2 messenger RNA 9-13 and protein 12-14 expression within the islets of Langerhans has been reported, but not yet been shown, to allow SARS-CoV-2 entry 9,12,15 . Diabetes mellitus presents Janus like in 16 ): first, pre-existing diabetes is a highly prevalent comorbidity observed in 11-22% of patients and as such increases the risk of a severe disease, requiring more intense interventions and increasing mortality [17][18][19][20][21][22] . Second, SARS-CoV-2 infection seems to affect the exocrine pancreas, manifesting as pancreatitis in 32.5% of critically ill patients 23 , and pancreatic enlargement and abnormal amylase or lipase levels in 7.5-17% of patients 9,22 . Third, metabolic dysregulation has been observed in patients with COVID-19 as:(1) increased hyperglycaemia in patients with type 2 diabetes 24 ; (2) ketoacidosis in 2-6.4% of diabetic and non-diabetic patients 18,25 ; and (3), in case studies reporting ketoacidosis on SARS-CoV-2 infection, accompanied by (4) new-onset type 1 diabetes mellitus (T1DM) in the absence of autoantibodies [26][27][28] . In a cohort study of patients with diabetes, hyperglycaemia was reported in more than 50% of all cases, and almost a third experienced diabetic ketoacidosis 29 . Finally, a multicentre study found an 80% increase of new-onset T1DM in children during the COVID-19 pandemic 30 . In accordance, a recent meta-analysis summarizes that severe SARS-CoV-2 infects and replicates in cells of the human endocrine and exocrine pancreas
Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre-including this research content-immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
SUMMARY Semen serves as a vehicle for HIV and promotes sexual transmission of the virus, which accounts for the majority of new HIV cases. The major component of semen is the coagulum, a viscous structure composed predominantly of spermatozoa and semenogelin proteins. Due to the activity of the semen protease PSA, the coagulum is liquefied and semenogelins are cleaved into smaller fragments. Here, we report that a subset of these semenogelin fragments form amyloid fibrils that greatly enhance HIV infection. Like SEVI, another amyloid fibril previously identified in semen, the semenogelin fibrils exhibit a cationic surface and enhance HIV virion attachment and entry. Whereas semen samples from healthy individuals greatly enhance HIV infection, semenogelin-deficient semen samples from patients with ejaculatory duct obstruction are completely deficient in enhancing activity. Semen thus harbors distinct amyloidogenic peptides derived from different precursor proteins that commonly enhance HIV infection and likely contribute to HIV transmission.
Highlights d Numerous SARS-CoV-2 proteins synergize to suppress immune sensing and signaling d Nsp14 targets IFNAR1 for lysosomal degradation d ORF3a and ORF7a block autophagy by different mechanisms d Synergistic treatment with IFN-g and -l1 is highly effective against SARS-CoV-2
Inefficient gene transfer and low virion concentrations are common limitations of retroviral transduction. We and others have previously shown that peptides derived from human semen form amyloid fibrils that boost retroviral gene delivery by promoting virion attachment to the target cells. However, application of these natural fibril-forming peptides is limited by moderate efficiencies, the high costs of peptide synthesis, and variability in fibril size and formation kinetics. Here, we report the development of nanofibrils that self-assemble in aqueous solution from a 12-residue peptide, termed enhancing factor C (EF-C). These artificial nanofibrils enhance retroviral gene transfer substantially more efficiently than semen-derived fibrils or other transduction enhancers. Moreover, EF-C nanofibrils allow the concentration of retroviral vectors by conventional low-speed centrifugation, and are safe and effective, as assessed in an ex vivo gene transfer study. Our results show that EF-C fibrils comprise a highly versatile, convenient and broadly applicable nanomaterial that holds the potential to significantly facilitate retroviral gene transfer in basic research and clinical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.