Highlights d B.1.1.7, B.1.351, and P.1 do not show augmented host cell entry d Entry inhibitors under clinical evaluation block all variants d B.1.351 and P.1 can escape from therapeutic antibodies d B.1.351 and P.1 evade antibodies induced by infection and vaccination
Initially, the pandemic COVID-19, caused by SARS-CoV-2, was considered to be an exclusive lung disease, eventually leading to serious respiratory symptoms 1 . In the meantime, accumulating experimental and clinical studies have suggested that SARS-CoV-2 may also cause lesions in the kidneys, heart, brain, and gastrointestinal and endocrine organs [2][3][4][5][6][7] . SARS-CoV-2 tropism towards distinct tissues is governed by cellular factors expressed on target cells such as the viral entry receptor angiotensin-converting enzyme 2 (ACE2) 8 and the transmembrane serine protease 2 (TMPRSS2) 8 . ACE2 messenger RNA 9-13 and protein 12-14 expression within the islets of Langerhans has been reported, but not yet been shown, to allow SARS-CoV-2 entry 9,12,15 . Diabetes mellitus presents Janus like in 16 ): first, pre-existing diabetes is a highly prevalent comorbidity observed in 11-22% of patients and as such increases the risk of a severe disease, requiring more intense interventions and increasing mortality [17][18][19][20][21][22] . Second, SARS-CoV-2 infection seems to affect the exocrine pancreas, manifesting as pancreatitis in 32.5% of critically ill patients 23 , and pancreatic enlargement and abnormal amylase or lipase levels in 7.5-17% of patients 9,22 . Third, metabolic dysregulation has been observed in patients with COVID-19 as:(1) increased hyperglycaemia in patients with type 2 diabetes 24 ; (2) ketoacidosis in 2-6.4% of diabetic and non-diabetic patients 18,25 ; and (3), in case studies reporting ketoacidosis on SARS-CoV-2 infection, accompanied by (4) new-onset type 1 diabetes mellitus (T1DM) in the absence of autoantibodies [26][27][28] . In a cohort study of patients with diabetes, hyperglycaemia was reported in more than 50% of all cases, and almost a third experienced diabetic ketoacidosis 29 . Finally, a multicentre study found an 80% increase of new-onset T1DM in children during the COVID-19 pandemic 30 . In accordance, a recent meta-analysis summarizes that severe SARS-CoV-2 infects and replicates in cells of the human endocrine and exocrine pancreas
Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre-including this research content-immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
The ongoing SARS-CoV-2 pandemic creates a significant threat to global health. Recent studies suggested the significance of throat and salivary glands as major sites of virus replication and transmission during early COVID-19 thus advocating application of oral antiseptics. However, the antiviral efficacy of oral rinsing solutions against SARS-CoV-2 has not been examined. Here, we evaluated the virucidal activity of different available oral rinses against SARS-CoV-2 under conditions mimicking nasopharyngeal secretions. Several formulations with significant SARS-CoV-2 inactivating properties in vitro support the idea that oral rinsing might reduce the viral load of saliva and could thus lower the transmission of SARS-CoV-2.
Guanylate-binding protein (GBP) 5 is an interferon (IFN)-inducible cellular factor reducing HIV-1 infectivity by an incompletely understood mechanism. Here, we show that this activity is shared by GBP2, but not by other members of the human GBP family. GBP2/5 decrease the activity of the cellular proprotein convertase furin, which mediates conversion of the HIV-1 envelope protein (Env) precursor gp160 into mature gp120 and gp41. Because this process primes HIV-1 Env for membrane fusion, viral particles produced in the presence of GBP2/5 are poorly infectious due to increased incorporation of nonfunctional gp160. Furin activity is critical for the processing of envelope glycoproteins of many viral pathogens. Consistently, GBP2/5 also inhibit Zika, measles, and influenza A virus replication and decrease infectivity of viral particles carrying glycoproteins of Marburg and murine leukemia viruses. Collectively, our results show that GPB2/5 exert broad antiviral activity by suppressing the activity of the virus-dependency factor furin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.