Vinylsilanes and vinylboronates are common building blocks for organic synthesis, but direct functionalization of these species without the participation of either the C=C or C−Si/B bonds is rare. Herein, we report a metal‐free allylic C−H amination reaction of these vinylmetalloid species that installs a new C−N bond without competing transmetallation or alkene addition. In this transformation, the silicon or boron substituent inverts the usual regioselectivity, directing amination to the site distal to that group. Subsequent cross‐coupling or demetallation allows access to complementary regioisomeric products. Density Functional Theory computations revealed that the observed regioselectivity is due to a subtle combination of electronic and counterintuitive steric factors that favor initial attack of selenium at the silicon‐bearing carbon atom.
We report a diastereoconvergent synthesis of anti-1,2-amino alcohols bearing N-containing quaternary stereocenters using an intermolecular direct C-H amination of homoallylic alcohol derivatives catalyzed by a phosphine selenide. Destruction of the...
Vinylsilanes and vinylboronates are common building blocks for organic synthesis, but direct functionalization of these species without the participation of either the C=C or CÀ Si/B bonds is rare. Herein, we report a metal-free allylic CÀ H amination reaction of these vinylmetalloid species that installs a new CÀ N bond without competing transmetallation or alkene addition. In this transformation, the silicon or boron substituent inverts the usual regioselectivity, directing amination to the site distal to that group. Subsequent cross-coupling or demetallation allows access to complementary regioisomeric products. Density Functional Theory computations revealed that the observed regioselectivity is due to a subtle combination of electronic and counterintuitive steric factors that favor initial attack of selenium at the silicon-bearing carbon atom.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.