Segmentation of objects from a noisy and complex image is still a challenging task that needs to be addressed. This article proposed a new method to detect and segment nuclei to determine whether they are malignant or not (determination of the region of interest, noise removal, enhance the image, candidate detection is employed on the centroid transform to evaluate the centroid of each object, the level set [LS] is applied to segment the nuclei). The proposed method consists of three main stages: preprocessing, seed detection, and segmentation. Preprocessing stage involves the preparation of the image conditions to ensure that they meet the segmentation requirements. Seed detection detects the seed point to be used in the segmentation stage, which refers to the process of segmenting the nuclei using the LS method. In this research work, 58 H&E breast cancer images from the UCSB Bio-Segmentation Benchmark dataset are evaluated. The proposed method reveals the high performance and accuracy in comparison to the techniques reported in literature. The experimental results are also harmonized with the ground truth images.
Making deductions and expectations about climate has been a challenge all through mankind's history. Challenges with exact meteorological directions assist to foresee and handle problems well in time. Different strategies have been investigated using various machine learning techniques in reported forecasting systems. Current research investigates climate as a major challenge for machine information mining and deduction. Accordingly, this paper presents a hybrid neural model (MLP and RBF) to enhance the accuracy of weather forecasting. Proposed hybrid model ensure precise forecasting due to the specialty of climate anticipating frameworks. The study concentrates on the data representing Saudi Arabia weather forecasting. The main input features employed to train individual and hybrid neural networks that include average dew point, minimum temperature, maximum temperature, mean temperature, average relative moistness, precipitation, normal wind speed, high wind speed and average cloudiness. The output layer composed of two neurons to represent rainy and dry weathers. Moreover, trial and error approach is adopted to select an appropriate number of inputs to the hybrid neural network. Correlation coefficient, RMSE and scatter index are the standard yard sticks adopted for forecast accuracy measurement. On individual standing MLP forecasting results are better than RBF, however, the proposed simplified hybrid neural model comes out with better forecasting accuracy as compared to both individual networks. Additionally, results are better than reported in the state of art, using a simple neural structure that reduces training time and complexity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.