Emotions are often felt in the body, and somatosensory feedback has been proposed to trigger conscious emotional experiences. Here we reveal maps of bodily sensations associated with different emotions using a unique topographical self-report method. In five experiments, participants (n = 701) were shown two silhouettes of bodies alongside emotional words, stories, movies, or facial expressions. They were asked to color the bodily regions whose activity they felt increasing or decreasing while viewing each stimulus. Different emotions were consistently associated with statistically separable bodily sensation maps across experiments. These maps were concordant across West European and East Asian samples. Statistical classifiers distinguished emotion-specific activation maps accurately, confirming independence of topographies across emotions. We propose that emotions are represented in the somatosensory system as culturally universal categorical somatotopic maps. Perception of these emotion-triggered bodily changes may play a key role in generating consciously felt emotions.embodiment | feelings | somatosensation W e often experience emotions directly in the body. When strolling through the park to meet with our sweetheart we walk lightly with our hearts pounding with excitement, whereas anxiety might tighten our muscles and make our hands sweat and tremble before an important job interview. Numerous studies have established that emotion systems prepare us to meet challenges encountered in the environment by adjusting the activation of the cardiovascular, skeletomuscular, neuroendocrine, and autonomic nervous system (ANS) (1). This link between emotions and bodily states is also reflected in the way we speak of emotions (2): a young bride getting married next week may suddenly have "cold feet," severely disappointed lovers may be "heartbroken," and our favorite song may send "a shiver down our spine." Both classic (3) and more recent (4, 5) models of emotional processing assume that subjective emotional feelings are triggered by the perception of emotion-related bodily states that reflect changes in the skeletomuscular, neuroendocrine, and autonomic nervous systems (1). These conscious feelings help the individuals to voluntarily fine-tune their behavior to better match the challenges of the environment (6). Although emotions are associated with a broad range of physiological changes (1, 7), it is still hotly debated whether the bodily changes associated with different emotions are specific enough to serve as the basis for discrete emotional feelings, such as anger, fear, or happiness (8, 9), and the topographical distribution of the emotion-related bodily sensations has remained unknown.Here we reveal maps of bodily sensations associated with different emotions using a unique computer-based, topographical self-report method (emBODY, Fig. 1). Participants (n = 701) were shown two silhouettes of bodies alongside emotional words, stories, movies, or facial expressions, and they were asked to color the bodily regions...
The adult brain is endowed with mechanisms subserving enhanced processing of salient emotional and social cues. Stimuli associated with threat represent one such class of cues. Previous research suggests that preferential allocation of attention to social signals of threat (i.e. a preference for fearful over happy facial expressions) emerges during the second half of the first year. The present study was designed to determine the age of onset for infants' attentional bias for fearful faces. Allocation of attention was studied by measuring event-related potentials (ERPs) and looking times (in a visual paired comparison task) to fearful and happy faces in 5- and 7-month-old infants. In 7-month-olds, the preferential allocation of attention to fearful faces was evident in both ERPs and looking times, i.e. the negative central mid-latency ERP amplitudes were more negative, and the looking times were longer for fearful than happy faces. No such differences were observed in the 5-month-olds. It is suggested that an enhanced sensitivity to facial signals of threat emerges between 5 and 7 months of age, and it may reflect functional development of the neural mechanisms involved in processing of emotionally significant stimuli.
Three experiments examined the recognition speed advantage for happy faces. The results replicated earlier findings by showing that positive (happy) facial expressions were recognized faster than negative (disgusted or sad) facial expressions (Experiments 1 and 2). In addition, the results showed that this effect was evident even when low-level physical differences between positive and negative faces were controlled by using schematic faces (Experiment 2), and that the effect was not attributable to an artifact arising from facilitated recognition of a single feature in the happy faces (up-turned mouth line, Experiment 3). Together, these results suggest that the happy face advantage may reflect a higher-level asymmetry in the recognition and categorization of emotionally positive and negative signals.
In 6 experiments, the authors investigated whether attention orienting by gaze direction is modulated by the emotional expression (neutral, happy, angry, or fearful) on the face. The results showed a clear spatial cuing effect by gaze direction but no effect by facial expression. In addition, it was shown that the cuing effect was stronger with schematic faces than with real faces, that gaze cuing could be achieved at very short stimulus onset asynchronies (14 ms), and that there was no evidence for a difference in the strength of cuing triggered by static gaze cues and by cues involving apparent motion of the pupils. In sum, the results suggest that in normal, healthy adults, eye direction processing for attention shifts is independent of facial expression analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.