Transport is Australia’s third-largest source of greenhouse gases accounting for around 17% of emissions. In recent times, and particularly as a result of the global pandemic, the rapid growth within the e-commerce sector has contributed to last-mile delivery becoming one of the main emission sources. Delivery vehicles operating at the last-mile travel long routes to deliver to customers an array of consignment parcels in varying numbers and weights, and therefore these vehicles play a major role in increasing emissions and air pollutants. The work reported in this paper aims to address these challenges by developing an IoT platform to measure and report on real-world last-mile delivery emissions. Such evaluations help to understand the factors contributing to freight emissions so that appropriate mitigation measures are implemented. Unlike previous research that was completed in controlled laboratory settings, the data collected in this research were from a delivery vehicle under real-world traffic and driving conditions. The IoT platform was tested to provide contextualised reporting by taking into account three main contexts including vehicle, environment and driving behaviours. This approach to data collection enabled the analysis of parcel level emissions and correlation of the vehicle characteristics, road conditions, ambient temperature and other environmental factors and driving behaviour that have an impact on emissions. The raw data collected from the sensors were analysed in real-time in the IoT platform, and the results showed a trade-off between parcel weight and total distance travelled which must be considered when selecting the best delivery order for reducing emissions. Overall, the study demonstrated the feasibility of the IoT platform in collecting the desired levels of data and providing detailed analysis of emissions at the parcel level. This type of micro-level understanding provides an important knowledge base for the enhancement of delivery processes and reduction of last-mile delivery emissions.
The rapid development of technology and interactive nature of Government 2.0 (Gov 2.0) is generating large data sets for Government, resulting in a struggle to control, manage, and extract the right information. Therefore, research into these large data sets (termed Big Data) has become necessary. Governments are now spending significant finances on storing and processing vast amounts of information because of the huge proliferation and complexity of Big Data and a lack of effective records management. On the other hand, there is a method called Electronic Records Management (ERM), for controlling and governing the important data of an organisation. This paper investigates the challenges identified from reviewing the literature for Gov 2.0, Big Data, and ERM in order to develop a better understanding of the application of ERM to Big Data to extract useable information in the context of Gov 2.0. The paper suggests that a key building block in providing useable information to stakeholders could potentially be ERM with its well established governance policies. A framework is constructed to illustrate how ERM can play a role in the context of Gov 2.0. Future research is necessary to address the specific constraints and expectations placed on governments in terms of data retention and use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.