Functional magnetic resonance imaging has demonstrated reorganization of memory encoding networks within the temporal lobe in temporal lobe epilepsy, but little is known of the extra-temporal networks in these patients. We investigated the temporal and extra-temporal reorganization of memory encoding networks in refractory temporal lobe epilepsy and the neural correlates of successful subsequent memory formation. We studied 44 patients with unilateral temporal lobe epilepsy and hippocampal sclerosis (24 left) and 26 healthy control subjects. All participants performed a functional magnetic resonance imaging memory encoding paradigm of faces and words with subsequent out-of-scanner recognition assessments. A blocked analysis was used to investigate activations during encoding and neural correlates of subsequent memory were investigated using an event-related analysis. Event-related activations were then correlated with out-of-scanner verbal and visual memory scores. During word encoding, control subjects activated the left prefrontal cortex and left hippocampus whereas patients with left hippocampal sclerosis showed significant additional right temporal and extra-temporal activations. Control subjects displayed subsequent verbal memory effects within left parahippocampal gyrus, left orbitofrontal cortex and fusiform gyrus whereas patients with left hippocampal sclerosis activated only right posterior hippocampus, parahippocampus and fusiform gyrus. Correlational analysis showed that patients with left hippocampal sclerosis with better verbal memory additionally activated left orbitofrontal cortex, anterior cingulate cortex and left posterior hippocampus. During face encoding, control subjects showed right lateralized prefrontal cortex and bilateral hippocampal activations. Patients with right hippocampal sclerosis showed increased temporal activations within the superior temporal gyri bilaterally and no increased extra-temporal areas of activation compared with control subjects. Control subjects showed subsequent visual memory effects within right amygdala, hippocampus, fusiform gyrus and orbitofrontal cortex. Patients with right hippocampal sclerosis showed subsequent visual memory effects within right posterior hippocampus, parahippocampal and fusiform gyri, and predominantly left hemisphere extra-temporal activations within the insula and orbitofrontal cortex. Correlational analysis showed that patients with right hippocampal sclerosis with better visual memory activated the amygdala bilaterally, right anterior parahippocampal gyrus and left insula. Right sided extra-temporal areas of reorganization observed in patients with left hippocampal sclerosis during word encoding and bilateral lateral temporal reorganization in patients with right hippocampal sclerosis during face encoding were not associated with subsequent memory formation. Reorganization within the medial temporal lobe, however, is an efficient process. The orbitofrontal cortex is critical to subsequent memory formation in control subjects and patie...
Objectives: Juvenile myoclonic epilepsy (JME) is characterized by myoclonic jerks of the upper limbs, often triggered by cognitive stressors. Here we aim to reconcile this particular seizure phenotype with the known frontal lobe type neuropsychological profile, photosensitivity, hyperexcitable motor cortex, and recent advanced imaging studies that identified abnormal functional connectivity of the motor cortex and supplementary motor area (SMA). Methods:We acquired fMRI and diffusion tensor imaging (DTI) in a cohort of 29 patients with JME and 28 healthy control subjects. We used fMRI to determine functional connectivity and DTIbased region parcellation and voxel-wise comparison of probabilistic tractography data to assess the structural connectivity profiles of the mesial frontal lobe. Results:Patients with JME showed alterations of mesial frontal connectivity with increased structural connectivity between the prefrontal cognitive cortex and motor cortex. We found a positive correlation between DTI and fMRI-based measures of structural and functional connectivity: the greater the structural connectivity between these 2 regions, the greater the observed functional connectivity of corresponding areas. Furthermore, connectivity was reduced between prefrontal and frontopolar regions and increased between the occipital cortex and the SMA. Conclusion:The observed alterations in microstructural connectivity of the mesial frontal region may represent the anatomic basis for cognitive triggering of motor seizures in JME. Changes in the mesial frontal connectivity profile provide an explanatory framework for several other clinical observations in JME and may be the link between seizure semiology, neurophysiology, neuropsychology, and imaging findings in JME. Neurology ® 2012;78:1555-1559 GLOSSARY DTI ϭ diffusion tensor imaging; FA ϭ fractional anisotropy; JME ϭ juvenile myoclonic epilepsy; MNI ϭ Montreal Neurological Institute; SMA ϭ supplementary motor area.Juvenile myoclonic epilepsy (JME) is the most common idiopathic generalized epilepsy syndrome in adults, characterized by myoclonic jerks of the arms and generalized tonic-clonic seizures.1 Seizures are typically provoked by sleep deprivation, but also by reading, writing, or other cognitive activities. 2 We recently described increased motor cortex activation in JME with increasing cognitive effort and increased functional connectivity to prefrontal cognitive networks.3 Impaired taskrelated deactivation of the supplementary motor area (SMA) suggested a role of the SMA as a relay, facilitating increased functional connectivity between prefrontal cognitive areas and the motor system.3 These findings link the motor cortex hyperexcitability hypothesis 4 to neuropsychological activation studies, showing increased spike frequency in the central region during demanding cognitive activities.
SummaryTemporal lobe epilepsy (TLE) is typically associated with long-term memory dysfunction. The frontal lobes support high-level cognition comprising executive skills and working memory that is vital for daily life functioning. Deficits in these functions have been increasingly reported in TLE. Evidence from both the neuropsychological and neuroimaging literature suggests both executive function and working memory are compromised in the presence of TLE. In relation to executive impairment, particular focus has been paid to set shifting as measured by the Wisconsin Card Sorting Task. Other discrete executive functions such as decision-making and theory of mind also appear vulnerable but have received little attention. With regard to working memory, the medial temporal lobe structures appear have a more critical role, but with emerging evidence of hippocampal dependent and independent processes. The relative role of underlying pathology and seizure spread is likely to have considerable bearing upon the cognitive phenotype and trajectory in TLE. The identification of the nature of frontal lobe dysfunction in TLE thus has important clinical implications for prognosis and surgical management. Longitudinal neuropsychological and neuroimaging studies assessing frontal lobe function in TLE patients pre- and postoperatively will improve our understanding further.
Memory decrements are the main neurocognitive complication of anterior temporal lobe resection for refractory temporal lobe epilepsy. Sidhu et al. report dynamic changes in memory-encoding networks three and twelve months post-surgery compared to preoperative measures and to healthy controls, and describe the neural correlates of successful post-operative memory reorganisation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.