Double patterning technology (DPT) provides the extension to immersion lithography before EUV lithography or other alternative lithography technologies are ready for manufacturing. Besides the additional cost due to DPT processes over traditional single patterning process, DPT design restrictions are of concerns for potential additional design costs. This paper analyzes design restrictions introduced by DPT in the form of DPT restricted design rules, which are the interface between design and technology. Both double patterning approaches, Litho-Etch-Litho-Etch (LELE) and Self-Aligned Double Patterning with spacer lithography (SADP), are studied. DPT design rules are summarized based on drawn design layers instead of decomposed layers. It is shown that designs can be made DPT compliant designs if DPT design rules are enforced and DPT coloring check finds no odd cycles. This paper also analyzes DPT design rules in the design rule optimization flow with examples. It is essential to consider DPT design rules in the integrated optimization flow. Only joint optimization in design rules between design, decomposition and process constraints can achieve the best scaled designs for manufacturing. This paper also discusses DPT enablement in the design flow where DPT aware design tools are needed so that final designs can meet all DPT restricted design rules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.