Datacenter workloads demand high computational capabilities, flexibility, power efficiency, and low cost. It is challenging to improve all of these factors simultaneously. To advance datacenter capabilities beyond what commodity server designs can provide, we have designed and built a composable, reconfigurable fabric to accelerate portions of large-scale software services. Each instantiation of the fabric consists of a 6x8 2-D torus of high-end Stratix V FPGAs embedded into a half-rack of 48 machines. One FPGA is placed into each server, accessible through PCIe, and wired directly to other FPGAs with pairs of 10 Gb SAS cables.In this paper, we describe a medium-scale deployment of this fabric on a bed of 1,632 servers, and measure its efficacy in accelerating the Bing web search engine. We describe the requirements and architecture of the system, detail the critical engineering challenges and solutions needed to make the system robust in the presence of failures, and measure the performance, power, and resilience of the system when ranking candidate documents. Under high load, the largescale reconfigurable fabric improves the ranking throughput of each server by a factor of 95% for a fixed latency distributionor, while maintaining equivalent throughput, reduces the tail latency by 29%.
Datacenter workloads demand high computational capabilities, flexibility, power efficiency, and low cost. It is challenging to improve all of these factors simultaneously. To advance datacenter capabilities beyond what commodity server designs can provide, we designed and built a composable, reconfigurable hardware fabric based on field programmable gate arrays (FPGA). Each server in the fabric contains one FPGA, and all FPGAs within a 48-server rack are interconnected over a low-latency, high-bandwidth network. We describe a medium-scale deployment of this fabric on a bed of 1632 servers, and measure its effectiveness in accelerating the ranking component of the Bing web search engine. We describe the requirements and architecture of the system, detail the critical engineering challenges and solutions needed to make the system robust in the presence of failures, and measure the performance, power, and resilience of the system. Under high load, the large-scale reconfigurable fabric improves the ranking throughput of each server by 95% at a desirable latency distribution or reduces tail latency by 29% at a fixed throughput. In other words, the reconfigurable fabric enables the same throughput using only half the number of servers.
Datacenter workloads demand high computational capabilities, flexibility, power efficiency, and low cost. It is challenging to improve all of these factors simultaneously. To advance datacenter capabilities beyond what commodity server designs can provide, we designed and built a composable, reconfigurable hardware fabric based on field programmable gate arrays (FPGA). Each server in the fabric contains one FPGA, and all FPGAs within a 48-server rack are interconnected over a low-latency, high-bandwidth network. We describe a medium-scale deployment of this fabric on a bed of 1632 servers, and measure its effectiveness in accelerating the ranking component of the Bing web search engine. We describe the requirements and architecture of the system, detail the critical engineering challenges and solutions needed to make the system robust in the presence of failures, and measure the performance, power, and resilience of the system. Under high load, the large-scale reconfigurable fabric improves the ranking throughput of each server by 95% at a desirable latency distribution or reduces tail latency by 29% at a fixed throughput. In other words, the reconfigurable fabric enables the same throughput using only half the number of servers.
spoken document retrieval, speech indexing, out-ofvocabulary words, OOV wordsWe present several novel approaches to the OOV query problem for spoken audio: indexing based on syllable-like units called particles and query expansion according to acoustic confusability for a word index. We also examine linear and OOV-based combination of indexing schemes.We experiment on 75 hours of broadcast news, comparing our approaches to a word index, a phoneme index and a phoneme index queried with phoneme sequences. Our results show that our approaches are superior to both a word index and a phoneme index for OOV words, and have comparable performance to the sequence of phonemes scheme. The particle system has worse performance than the acoustic query expansion scheme. The best system u ses word queries for in-vocabulary words and a linear combination of the phoneme sequence scheme and acoustic query expansion for OOV words. This system improved the average precision from 0.35 for a word index to 0.40. * Internal Accession Date OnlyApproved for External Publication Portions of this work were based on papers published in
As the Web transforms from a text only medium into a more multimedia rich medium the need arises to perform searches based on the multimedia content. In this paper we present an audio and video search engine to tackle this problem. The engine uses speech recognition technology to index spoken audio and video files from the World Wide Web when no transcriptions are available. If transcriptions (even imperfect ones) are available we can also take advantage of them to improve the indexing process.Our engine indexes several thousand talk and news radio shows covering a wide range of topics and speaking styles from a selection of public Web sites with multimedia archives. Our Web site is similar in spirit to normal Web search sites; it contains an index, not the actual multimedia content. The audio from these shows suffers in acoustic quality due to bandwidth limitations, coding, compression, and poor acoustic conditions. Our word-error rate results using appropriately trained acoustic models show remarkable resilience to the high compression, though many factors combine to increase the average word-error rates over standard broadcast news benchmarks. We show that, even if the transcription is inaccurate, we can still achieve good retrieval performance for typical user queries (77.5%).Author
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.