An analysis of secondary flow structures and losses in a variable-vane radial turbine geometry is provided based on CFD. A complete turbine stage of a commercial vehicle turbocharger is modeled, including the entire 360° rotor and stator, in order to account for the circumferential non-uniformity of the flow. The full-stage model consists of approximately 12,500,000 nodes. The stator domain accounts for the endwall clearance on the hub side of the nozzle vanes. As an additional feature typical for variable turbine geometries, cylindrical shaft seals at the stator vane axis at hub and shroud as well as four circumferentially equidistant spacers are modeled. These geometrical details allow a more realistic simulation of the stator domain. In an analysis using fields of helicity and Q-Criterion, the present features are found to induce additional secondary vortices in the stator, in addition to the inflow and horse shoe vortices found by previous investigators. A detailed analysis of the secondary flow structures in this realistic stator shows that the spacers contribute 33% to the overall stator losses.
The tip-leakage flow mechanisms in turbocharger turbines used for downsized internal combustion engines and the associated losses are investigated over a range of operating conditions. Experiments are performed on a small, 35 mm diameter turbocharger turbine with varying tip-gap heights in a turbocharger test facility and numerical simulations are presented for extending the parameter range to sizes not covered experimentally. The sensitivity of turbine efficiency to tip-gap is evaluated and correlations for the estimation of tip-leakage related loss of efficiency are developed. An optimum applicable tip-gap size for radial turbines is suggested. The results show that the magnitude of the tip-leakage losses, e.g. in downsizing turbocharger turbines, provides a high potential for their improvement.
Today engine performance simulations are essential in the preliminary design of turbocharged combustion engines, e.g. when matching the engine and the turbocharger. In order to optimize this matching process and to enable a preliminary selection of different turbocharger types and sizes, realistic modifications of the compressor and turbine maps are needed. This paper discusses several published approaches for compressor diameter scaling methods. In this context, an improved method to determine the efficiency changes due to diameter scaling of small turbocharger compressors is presented. Besides diameter scaling, trim scaling is a possibility to change the operating range of a compressor. Therefore, a trim scaling method is provided. In order to validate the scaling methods, scaled compressor maps are compared to measured nominal maps.
Aerodynamic forces are a major cause of turbocharger bearing friction. Thus, numerical simulations with ANSYS CFX are performed for a turbocharger turbine and compressor in order to determine these forces. Today, in common turbocharger CFD simulations the influence of the impeller backside cavity and blow-by are usually neglected. As a consequence, the axial forces on the impeller cannot be correctly determined. In this study therefore, the impeller backside cavity and blow-by were taken into account. Additionally, the influence of different operating conditions as well as different turbine and compressor blow-by flows were investigated. Finally, the resulting aerodynamic impeller forces of a turbocharger were analysed and visualized. The results show some trends which agree with the impeller forces of larger radial turbines and compressors published in literature. However some turbocharger-specific differences are identified, e.g. the wide operation range of a turbocharger. The influences of blow-by are found to be small but not negligible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.