A high-robustness and low-capacitance clamp for on-chip electrostatic discharge (ESD) protection is developed. The low capacitance is obtained by mitigating the capacitance associated with the lightly doped n-well/p-well junction. In addition to minimizing the capacitance, the high ESD robustness is achieved by optimizing independently within the same structure a silicon-controlled rectifier and a diode for the forward and reverse conduction processes, respectively. The new clamp with an area of 50 × 10 μm 2 is able to handle an ESD current in excess of 1.5 A, whereas the capacitance at zero bias is kept at 94 fF.Index Terms-Electrostatic discharge (ESD), parasitic capacitance, silicon-controlled rectifier (SCR).
Optical coherence tomography (OCT) imaging at the 1060-nm region proved to be a successful alternative in ophthalmology not only for resolving intraretinal layers, but also for enabling sufficient penetration to monitor the subretinal vasculature in the choroid when compared to most commonly used OCT imaging systems at the 800-nm region. To encourage further clinical research at this particular wavelength, we have developed a compact fiber-optic source based on amplified spontaneous emission (ASE) centered at 1060 nm with 70-nm spectral bandwidth at full-width at half-maximum and output power 20 mW. Our approach is based on a combination of slightly shifted ASE emission spectra from a combination of Neodymiumand Ytterbium-doped fibers. Spectral shaping and power optimization have been achieved using in-fiber filtering schemes. We have tested the performance of the source in an OCT system optimized for this wavelength.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.